
� General theory of quantum error correction and

fault�tolerance

Some introductory examples of quantum error correction �QEC� methods were given
in a previous lecture� Here we will give a summary of the simplest aspects of the more
general theory�

QEC is based on three central ideas� digitization of noise� the manipulation of error
operators and syndromes� and quantum error correcting code �QECC� construction�
The degree of success of QEC relies on the physics of noise� we will turn to this after
discussing the three central ideas�

��� Digitization of noise

�Digitization of noise� is based on the observation that any interaction between a set
of qubits and another system �such as the environment� can be expressed by�

j�i j�ie �
X
i

�Ei j�i� j�iie ���

where each 	error operator
 Ei is a tensor product of Pauli operators acting on the
qubits� j�i is the initial state of the qubits� and j�ie are states of the environment�
not necessarily orthogonal or normalised� We thus express general noise and�or de�
coherence in terms of Pauli operators �x� �y� �z acting on the qubits� These will be
written X � �x� Z � �z � Y � �i�y  XZ�

To write tensor products of Pauli matrices acting on n qubits� we introduce the
notation XuZv where u and v are n�bit binary vectors� The non�zero coordinates of
u and v indicate where X and Z operators appear in the product� For example�

X � I � Z � Y �X � X�����Z������ ���

Error correction is a process which takes a state such as Ei j�i to j�i� Correction of
X errors takes XuZv j�i to Zv j�i� correction of Z errors takes XuZv j�i to Xv j�i�
Putting all this together� we discover the highly signi�cant fact that to correct the
most general possible noise �eq� ����� it is su�cient to correct just X and Z errors�

��� Error operators� stabilizer� and syndrome extraction

We will now examine the mathematics of error operators and syndromes� using the
insightful approach put forward by Gottesman ���� and Calderbank et� al� ��� ���
building on the �rst discoveries of Steane ��� �� and Calderbank and Shor ��� ���

Consider the set fI�X� Y� Zg consisting of the identity plus the three Pauli operators�
The Pauli operators all square to I � X�  Y �  Z�  I � and have eigenvalues ���
Two members of the set only ever commute �XI  IX� or anticommute� XZ  �ZX �
Tensor products of Pauli operators� i�e� error operators� also square to one and either
commute or anticommute� N�B� the term 	error operator
 is here just a shorthand
for 	product of Pauli operators
� such an operator will sometimes play the role of an
error� sometimes of a parity check� c�f� classical coding theory�
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If there are n qubits in the quantum system� then error operators will be of length n�
The weight of an error operator is the number of terms not equal to I � For example
X�����Z����� has length �� weight ��

LetH  fMg be a set of commuting error operators� Since the operators all commute�
they can have simultaneuous eigenstates� Let C  fjuig be the orthonormal set of
simultaneous eigenstates all having eigenvalue ���

M jui  jui �u � C� �M � H ���

The set C is a quantum error correcting code� and H is its stabilizer� The orthonormal
states jui are termed code vectors or quantum codewords� In what follows� we will
restrict attention to the case that H is a group� Its size is �n�k� and it is spanned
by n � k linearly independent members of H� In this case C has �k members� so
it encodes k qubits� since its members span a �k dimensional subspace of the �n

dimensional Hilbert space of the whole system� A general state in this subspace�
called an encoded state or logical state� can be expressed as a superposition of the
code vectors�

j�iL 
X
u�C

au jui ���

Naturally� a given QECC does not allow correction of all possible errors� Each code
allows correction of a particular set S  fEg of correctable errors� The task of code
construction consists of �nding codes whose correctable set includes the errors most
likely to occur in a given physical situation� We will turn to this important topic in
the next section� First� let us show how the correctable set is related to the stabilizer�
and demonstrate how the error correction is actually achieved�

First� error operators in the stabilizer are all correctable� E � S � E � H� since these
operators actually have no e�ect on a general logical state ���� If these error operators
are themselves the only terms in the noise of the system under consideration� then the
QECC is a noise�free subspace� also called decoherence�free subspace �� of the system�

There is a large set of further errors which do change encoded states but are never�
theless correctable by a process of extracting an error syndrome� and then acting on
the system depending on what syndrome is obtained� We will show that S can be
any set of errors fEig such that every product E�E� of two members is either in H�
or anticommutes with a member of H� To see this� take the second case �rst�

E�E�M  �ME�E� for some M � H� ���

We say that the combined error operator E�E� is detectable� This can only happen if

either fME�  �E�M� ME�  E�Mg
or fME�  E�M� ME�  �E�Mg ���

To extract the syndrome we measure all the observables in the stabilizer� To do this�
it is su�cient to measure any set of n � k linearly independent M in H� Note that
such a measurement has no e�ect on a state in the encoded subspace� since such a
state is already an eigenstate of all these observables� The measurement projects a
noisy state onto an eigenstate of each M � with eigenvalue ��� The string of n � k
eigenvalues is the syndrome� Equations ��� guarantee that E� and E� have di�erent
syndromes� and so can be distinguished from each other� For� when the observable
M is measured on the corrupted state E j�iL� ��� means a di�erent eigenvalue will be
obtained when E  E� than when E  E�� Therefore� the error can be deduced from
the syndrome� and reversed by re�applying the deduced error to the system �taking
advantage of the fact that error operators square to ���
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Let us see how this whole process looks when applied to a general noisy encoded state�
The noisy state is X

i

�Ei j�iL� j�iie ���

The syndrome extraction can be done most simply by attaching an n�k qubit ancilla
a to the system� and storing in it the eigenvalues by a sequence of cnot gates and
Hadamard rotations� The exact network can be constructed either by thinking in
terms of parity check information stored into the ancilla� or by the following standard
eigenvalue measurement method� To extract the �  �� eigenvalue of operator M �
prepare an ancilla in �j�i � j�i��p�� Operate controlled�M with ancilla as control�
system as target� then Hadamard rotate the ancilla� The �nal state of the ancilla is
������ j�i������ j�i���� Carrying out this process for the n�k operatorsM which
span H� the e�ect is to couple system and environment with the ancilla as follows�

j�ia
X
i

�Ei j�iL� j�iie �
X
i

jsiia �Ei j�iL� j�iie � ���

The si are �n�k��bit binary strings� all di�erent if the Ei all have di�erent syndromes�
A projective measurement of the ancilla will collapse the sum to a single term taken
at random� jsiia �Ei j�iL� j�iie� and will yield s as the measurement result� Since
there is only one Ei with this syndrome� we can deduce the operator Ei which should
now be applied to correct the error�

Figure �� Figure �

This remarkable process can be understood as �rst forcing the general noisy state
to 	choose
 among a discrete set of errors� via a projective measurement� and then
reversing the particular discrete error 	chosen
 using the fact that the measurement
result tells us which one it was� Alternatively� the correction can be accomplished by a
unitary evolution consisting of controlled gates with ancilla as control� system as tar�
get� e�ectively transferring the noise �including entanglement with the environment�
from system to ancilla�

We left out of the above the other possibility mentioned just before eq� ���� namely
that

E�E� � H� ���

In this case E� and E� will have the same syndrome� so are indistinguishable in the
syndrome extraction process� However� this does not matter� We simply interpret the
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common syndrome of these two errors as an indication that the corrective operation
E� should be applied� If it was E� that occured� this is obviously �ne� while if in fact
E� occured� the �nal state is E�E� j�iL which is also correct� This situation has no
analogue in classical coding theory� The quantum codes which take advantage of it
are termed degenerate and are not constrained by the quantum Hamming bound�

The discussion based on the stabilizer is useful because it focusses attention on opera�
tors rather than states� Quantum codewords are nevertheless very interesting states�
having a lot of symmetry and interesting forms of entanglement� The codewords in
the QECC can readily be shown to allow correction of the set S if and only if ��� ��

hujE�E� jvi  � ����

hujE�E� jui  hvjE�E� jvi ����

for all E�� E� � S and jui � jvi � C� jui � jvi� In the case that E�E� always anti�
commutes with a member of the stabilizer� we have hujE�E� jui  hujE�E�M jui 
�hujME�E� jui  �hujE�E� jui� therefore hujE�E� jui  �� This is a nondegener�
ate code� all the code vectors and their erroneous versions are mutually orthogonal�
and the quantum Hamming bound must be satis�ed�

��� Code construction

The power of QEC results from the physical insights and mathematical techniques
already discussed� combined with the fact that useful QECCs can actually be found�
Code construction is itself a subtle and interesting area� which we will merely intro�
duce here�

First� recall that we require the members of the stabilizer all to commute� It is easy
to show that XuZv  ����u�vZvXu� where u � v is the binary parity check operation�
or inner product between binary vectors� evaluated in GF ���� From this� M  XuZv
and M �  Xu�Zv� commute if and only if

u � v� � v � u�  � ����

The stabilizer is completely speci�ed by writing down the n� k linearly independent
error operators which span it� It is convenient to write these error operators by
giving the binary strings u and v which indicate the X and Z parts� in the form
of two �n � k� 	 n binary matrices Hx� Hz� The whole stabilizer is then uniquely
speci�ed by the �n� k�	 �n binary matrix

H  �Hxj Hz� ����

and the requirement that the operators all commute �i�e� H is an abelian group� is
expressed by

HxH
T
z �HzH

T
x  � ����

where T indicates the matrix transpose�

The matrixH is the analogue of the parity check matrix for a classical error correcting
code� The analogue of the generator matrix is the matrix G  �GxjGz� satisfying

HxG
T
z �HzG

T
x  �� ����

In other words� H and G are duals with respect to the inner product de�ned by �����
G has n � k rows� H may be obtained directly from G by swapping the X and Z
parts and extracting the usual binary dual of the resulting �n�k�	�n binary matrix�
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Note that ���� and ���� imply that G contains H � Let G be the set of error operators
generated by G� then also G contains H�

Since by de�nition ����� all the members of G commute with all the members of H�
and since �by counting� there can be no further error operators which commute with
all of H� we deduce that all error operators not in G anticommute with at least one
member of H � This leads us to a powerful observation� if all members of G �other than
the identity� have weight at least d� then all error operators �other than the identity�
of weight less than d anticommute with a member of H� and so are detectable� Such
a code can therefore correct all error operators of weight less than d���

What if the only members of G having weight less than d are also members ofH� Then
the code can still correct all error operators of weight less than d��� using property
��� �a degenerate code�� The weight d is called the minimum distance of the code�

The problem of code construction is thus reduced to a problem of �nding binary
matricesH which satisfy ����� and whose duals G� de�ned by ����� have large weights�
We will now write down such a code by combining well�chosen classical binary error
correcting codes�

H 

�
H� �
� H�

�
� G 

�
G� �
� G�

�
� ����

Here Hi� i  �� �� is the check matrix of the classical code Ci generated by Gi�
Therefore HiG

T
i  � and ���� is satis�ed� To satisfy commutativity� ����� we force

H�H
T
�  �� in other words� C�

� 
 C�� By construction� if the classical codes have size
k�� k�� then the quantum code has size k  k�� k��n� The quantum codewords are

juiL 
X
x�C�

�

jx� u �Di ����

where u is a k�bit binary word� x is an n�bit binary word� andD is a �k	n� matrix of
coset leaders� These are the CSS �Calderbank Shor Steane� codes� Their signi�cance
is �rst that they can be e�cient� and second that they are useful in fault�tolerant
computing �see below��

By �e�cient� we mean that there exist codes of given d�n whose rate k�n remains
above a �nite lower bound� as k� n� d � �� The CSS codes have d  min�d�� d��� If
we choose the pair of classical codes in the construction to be the same� C�  C�  C�
then we are considering a classical code which contains its dual� A �nite lower bound
for the rate of such codes can be shown to exist ���� This is highly signi�cant� it
means that QEC can be a very powerful method to suppress noise �see next section��

There exist QECCs more e�cient than CSS codes� Good codes can be found by
extending CSS codes� and by other methods� For illustration� we �nish this section
with the stabilizer and generator of the ��n� k� d��  ���� �� ��� perfect code� It encodes
a single qubit �k  ��� and corrects all errors of weight � �since d��  �����

H 

�
BB�

����� �����
����� �����
����� �����
����� �����

�
CCA � G 

�
� Hx Hz

����� �����
����� �����

�
A � ����

��� The physics of noise

Noise and decoherence is itself a large subject� Here we will simply introduce a few
basic ideas� in order to clarify what QEC can and cannot do� By 	noise
 we mean
simply any unknown or unwanted change in the density matrix of our system�
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The statement ��� about digitization of noise is equivalent to the statement that any
interaction between a system of qubits and its environment has the form

HI 
X
i

Ei �He
i ����

where the operators He
i act on the environment� Under the action of this coupling�

the density matrix of the system �after tracing over the environment� evolves from
�� to

P
i aiEi��Ei� QEC returns all terms of this sum having correctable Ei to ���

Therefore� the �delity of the corrected state� compared to the noise�free state ��� is
determined by the sum of all coe�cients ai associated with uncorrectable errors�

For a mathematically thorough analysis of this problem� see ��� ��� The essential ideas
are as follows� Noise is typically a continuous process a�ecting all qubits all the time�
However� when we discuss QEC� we can always adopt the model that the syndrome is
extracted by a projective measurement� Any statement such as 	the probability that
error Ei occurs
 is just a short�hand for 	the probability that the syndrome extraction
projects the state onto one which di�ers from the noise�free state by error operator
Ei
� We would like to calculate such probabilities�

To do so� it is useful to divide up ���� into a sum of terms having error operators of
di�erent weight�

HI 
X

wt�E���

E �He
E �

X
wt�E���

E �He
E �

X
wt�E���

E �He
E � � � � ����

There are �n terms in the �rst sum� ��n������n� ���� terms in the second� and so on�
The strength of the system�environment coupling is expressed by coupling constants
which appear in the He

E operators� In the case that only the weight � terms are
present� we say the environment acts independently on the qubits� it does not directly
produce correlated errors across two or more qubits� In this case� errors of all weights
will still appear in the density matrix of the noisy system� but the size of the terms
corresponding to errors of weight w will be O���w�� where � is a parameter giving the
system�environment coupling strength�

Since QEC restores all terms in the density matrix whose errors are of weight � t 
�d� ����� the �delity of the corrected state� in the uncorrelated noise model� can be
estimated as one minus the probability P �t� �� for the noise to generate an error of
weight t� �� This is probability is approximately

P �t� �� 
�
�t��

�
n

t� �

�
�t��
��

����

when all the single�qubit error amplitudes can add coherently �i�e� the qubits share a
common environment�� or

P �t� ��  �t��
�

n
t� �

�
���t��� ����

when the errors add incoherently �i�e� either seperate environments� or a common
environment with couplings of randomly changing phase�� The signi�cance of ����
and ���� is that they imply QEC works extremely well when t is large and �� 	 t��n�
Since good codes exist� t can in fact tend to in�nity while t�n and k�n remain �xed�
Therefore as long as the noise per qubit is below a threshold around t��n� almost
perfect recovery of the state is possible� The ratio t�n constrains the rate of the code
through the quantum Hamming bound or its cousins�

Such uncorrelated noise is a reasonable approximation in many physical situations� but
we need to be careful about the degree of approximation� since we are concerned with
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very small terms of order �d� If we relax the approximation of completely uncorrelated
noise� equations ���� and ���� remain approximately unchanged� if and only if the
coupling constants in ���� for errors of weight t are themselves of order �t�t��

A very di�erent case in which QEC is also highly successful is when a set of correlated
errors� also called burst errors� dominate the system�environment coupling� but we
can �nd a QEC whose stabilzer includes all these correlated errors� This is sometimes
called 	error avoiding
 rather than 	error correction
 since by using such a code� we
don
t even need to correct the logical state� it is already decoupled from the environ�
ment� The general lesson is that the more we know about the environment� and the
more structure there exists in the system�environment coupling� the better able we
are to �nd good codes�

��� Fault tolerant quantum computation

The above discussion of QEC is relevent to high��delity communication down noisy
quantum channels� but it is not yet clear how relevent it may be to quantum com�
puting� This is because so far we have assumed the quantum operations involved
in syndrome extraction are themselves noise�free� Therefore we are using processing
power to combat noise� but it is not clear what degree of precision of the processing
is necessary in order to gain something�

Fault tolerant computation is concerned with processing information reliably even
when every elementary operation� and every period of free evolution� is itself noisy�
One way to approach this is to use QEC repeatedly� but with the syndrome extraction
procedure carefully constructed in such away that it corrects more noise than it intro�
duces� Most of the essential new insights which permit us to do this were introduced
by Shor ���� and helpfully discussed by Preskill ����� see also ���� ��� ���� Here we
will adopt Shor
s general approach� but with signi�cant improvements introduced by
Steane ���� ���� Note that this subject is much less mature than QEC� many avenues
remain unexplored� Here we will concentrate on explaining one method to extract
syndromes in the right way�

A complete fault�tolerant syndrome extraction network is shown in �gure �� For
brevity� we consider the simplest case of a single�error correcting code� the ideas can
be generalised to codes correcting many errors� The fundamental ��state entities in
the computer are called physical qubits� Each horizontal line in the network represents
not a single physical qubit� but a block of n such qubits� Operators such as Hadamard
and cnot are applied across the relevent block or blocks� i�e� n operations� one for
each qubit or pair of qubits�

The method relies on the careful use of repetition� on the fact that X and Z er�
rors propagate di�erently� and on useful properties of CSS codes� De�ne an error

location to be any � or ��qubit gate on physical qubits �including preparation and
measurement operations�� or the free evolution of any single physical qubit during
one timestep� The noise is assumed to be uncorrelated and stochastic� so that failures
occur independently with probability � 
� The aim of the whole network is to achieve
a single�error correction of the computer block� in such a way that no failure at a sin�
gle location can result in an error of weight � � in the computer block� The idea is
that while the syndrome extraction must make single�qubit errors in the computer
more likely� these are the very ones which are correctable� The important thing is not
to generate uncorrectable errors with O�
� probability�

We begin by introducing � ancilla blocks� and preparing each in the logical zero state
j�iL� Each preparation is not fault tolerant� it will fail in such a way that the prepared
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state can have any error of any weight with probability O�
�� Operate cnot blockwise
between the two ancillas� and measure all the bits of one of them in the computational
basis� Here we are trying to verify that the correct state was prepared� using the fact
that blockwise physical cnot acts as a logical cnot for a CSS code� Therefore� the
measurement result should be a member of the classical code C�

� �eq� ������ If it
is not� then reprepare the pair of ancillas and repeat until it is� At this stage� the
probability for the remaining unmeasured ancilla to have X errors of weight � � is
O�
��� because it can only happen if failures occur in at least two locations� Note
that the ancilla might still have Z errors of any weight�

Now couple the veri�ed ancilla to the computer by blockwise physical cnot� Once
again� we use the fact that this acts as logical cnot� so there should be no e�ect�
In fact something does happen� X errors propagate from ancilla to computer� and
Z errors propagate from computer to ancilla� This is a sneaky� and fault tolerant�
way to gather the Z�error syndrome into the ancilla� We read it out by Hadamard
transforming the ancilla �to convert Z errors to bit �ips� and measuring all the bits
of the ancilla in the computational basis� Here we have used the property� valid for a
certain class of CSS codes� that blockwise physical H acts as logical H � so will keep
the ancilla state in the encoded subspace� except for the Z errors which become X
errors�

There is still no single error location which can produce a weight�� error in the com�
puter� but now we are in danger� since there are many locations where a single failure
would lead to an incorrect syndrome� If we were to 	correct
 the computer on the
basis of the wrong syndrome� we would actually introduce more errors� Therefore�
the whole of the process described up till now is repeated� We �nally end up with two
syndromes� If they agree� then the only way they can be wrong is if failures occured
at two di�erent locations� an O�
�� process� so we go ahead and believe them� If they
disagree� a third syndrome must be extracted� and we act on the majority vote�

We have now completed the correction of Z errors in the computer �while generating
further Z errors� which will be caught in the next round of correction�� The second
half of the network acts similarly� but now gathers up and corrects the X errors in
the computer�

Note that the whole process depends on the fact that X and Z errors propagate
di�erently� We can fault�tolerantly verify the ancilla against X errors� but only by
accepting the chance to have high�weight Z errors in the ancilla� This is OK because
those Z errors stay put� they don
t propagate up to the computer� they just make
the syndrome wrong� We subsequently check for their presence by generating the
syndrome again� Note also the heavy reliance on useful properties of CSS codes� such
as their behaviour under blockwise gates�

In a repeated series of error recoveries� each round of recovery corrects not just the
errors developed in the computer during that round� but also the errors caused by
the previous round �as long as they are correctable�� It leaves uncorrected the errors
it itself caused� The noise level accumulated after R rounds is therefore suppressed
from O�R
� to O�R
� � 
�� which is bene�cial for large R and su�ciently small 
�

To complete the task of fault tolerant computation� not just memory storage� we need
to be able to evolve the computer state through the desired quantum algorithm� We
already saw how to perform logical Hadamard and cnot operations on the state
encoded by a CSS code� operate blockwise on the qubits� This is fault tolerant since
each physical gate only connects to one physical qubit per block� To obtain a complete
set of operations� we use the fact that the members of the continuous set of all gates
can be approximated e�ciently by using members of a discrete set� To complete the
set� it is su�cient to have a fault�tolerant To�oli gate� or one of a set of closely related
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gates� among which is the controlled���� rotation� Shor ���� proposed a �somewhat
obscure� network for To�oli� It is possible to understand the construction as related
to teleportation� Teleportation can be understood as a form of fault tolerant swap
operation� and it is useful for moving information around fault�tolerantly in a quantum
computer���� ���� These and other methods are under active investigation�

At the time of writing� fault tolerant computation based on repeated QEC seems to be
the most promising way to realise large quantum algorithms� though the requirements
on the physical hardware� both in terms of computer size and noise level� remain
formidable�

References

��� P� W� Shor� �Scheme for reducing decoherence in quantum computer memory��
Phys� Rev� A� vol� ��� pp� R�����R����� Oct� �����

��� A� M� Steane� �Error correcting codes in quantum theory�� Phys� Rev� Lett�� vol�
��� pp� �������� July �����

��� A� R� Calderbank and P� W� Shor� �Good quantum error�correcting codes exist��
Phys� Rev� A� vol� ��� pp� ���������� Aug� �����

��� A� M� Steane� �Multiple particle interference and quantum error correction��
Proc� Roy� Soc� Lond� A� vol� ���� pp� ���������� Nov� �����

��� A� R� Calderbank� E� M� Rains� P� W� Shor and N� J� A� Sloane� �Quantum
error correction via codes over GF ����� IEEE Trans� Information Theory� vol�
��� pp���������� July �����

��� A� R� Calderbank� E� M� Rains� N� J� A� Sloane and P� W� Shor� �Quantum
error correction and orthogonal geometry�� Phys� Rev� Lett�� vol� ��� pp� ����
���� �������

��� E� Knill and R� La�amme� �A theory of quantum error correcting codes�� Phys�

Rev� A� vol� ��� pp� �������� �������

��� E� Knill and R� La�amme� �Concatenated quantum codes�� LANL eprint quant�
ph���������

��� C� H� Bennett� D� P� DiVincenzo� J� A� Smolin and W� K� Wootters� �Mixed
state entanglement and quantum error correction�� Phys� Rev� A� vol� ��� pp�
���������� �������

���� D� Gottesman� �Class of quantum error�correcting codes saturating the quantum
Hamming bound�� Phys� Rev� A� vol� ��� pp� ���������� �������

���� P� W� Shor� �Fault�tolerant quantum computation�� in Proc� ��th Symp� on

Foundations of Computer Science� �Los Alamitos� CA� IEEE Computer Society
Press�� pp����� �������

���� J� Preskill� �Reliable quantum computers�� Proc� Roy� Soc� Lond� A ���� ���
�������

���� A� M� Steane �Active stabilisation� quantum computation and quantum state
synthesis�� Phys� Rev� Lett� ��� ��������� �������

���� A� M� Steane� �E�cient fault�tolerant quantum computing�� Nature� vol� ����
������� �May ������ �LANL eprint quant�ph����������

�



���� E� Knill� R� La�amme and W� H� Zurek� �Resilient quantum computation� Error
Models and Thresholds�� Proc� Roy� Soc� Lond A ���� ������� ������� Science
���� ������� ������� �LANL eprint quant�ph���������

���� A� M� Steane� �Space� time� parallelism and noise requirements for reliable
quantum computing�� Fortschr� Phys� ��� ������� ������� �LANL eprint quant�
ph����������

���� D� Gottesman� �A theory of fault�tolerant quantum computation�� Phys� Rev� A

��� ��� ������� �LANL eprint quant�ph���������

���� D� Aharonov and M� Ben�Or� �Fault�Tolerant Quantum Computation With Con�
stant Error Rate� LANL eprint quant�ph���������

��


