
A Comprehensive Approach to Logic Synthesis and
Physical Design for Two-Dimensional Logic Arrays

Andisheh Sarabi, Ning Song,

Malgorzata Chrzanowska-Jeske, and Marek A. Perkowski

Portland State University, Department of Electrical Engineering
P.O. Box 751, Portland, OR, 97207, tel. (503) 725-5411

ABSTRACT

This paper introduces a new design approach that combines
logic and layout synthesis for Cellular-Architecture (CA) FPGAs.
The comprehensive design method starts from a Boolean function,
specified as SOP or ESOP, and produces a rectangularly-shaped
multi-level structure of (mostly) locally connected cells. This two-
dimensional array of logic cells is well suited for CA-type FPGA
realization. Two stages: restricted factorization and technology
folding are discussed in more details. The architecture constraints
and the implementation are presented for ATMEL6000 series archi-
tecture.

1. INTRODUCTION

In recent years programmable logic devices are being used
more frequently as the alternatives to the traditional ASIC technolo-
gies. They can be classified accordingly to the basic Boolean primi-
tives, the granularity of these primitives, the routing domain archi-
tecture, and the programming method they use. Intensive studies
have been undertaken to develop the technology mapping and layout
synthesis methods for the two most popular categories of these dev-
ices, namely look-up-table based (LUT-based) and row-based
FPGAs. The architecture-specific technology mapping approaches
were developed, and the placement and routing techniques were
mostly adopted from the semi-custom design styles like standard
cells and gate arrays, with some necessary modifications. Other
categories of FPGAs have not attracted so far much attention of the
research community. This paper focuses on logic and layout syn-
thesis of the other category of FPGAs, mainly Cellular-Architecture
(CA) FPGAs. These devices are characterized by the local connec-
tivity between logic blocks placed as a symmetrical array. Logic
blocks are usually of the standard-cell type with a limited number of
inputs and outputs. These FPGAs are called by some sea-of gate or
fine-grain type, however in this paper, we will refer to them as CA-
type FPGA, as we believe that this name represents more accurately
the main feature that distinguishes this group from the others; local
connectivity.

Different approach to the logic and layout synthesis for these
type devices is needed to efficiently utilize their potential and we
believe that the methods of separate technology mapping, placement
and routing, used for other FPGAs, become of little value. In the
traditional approach a large number of logic cells is used for wiring
connections or left unused at all. This problem is mainly caused by
not preserving local connectivity during the synthesis steps. Fre-
quently, local buses need to be used to complete even very short
connections, which increases circuit delay. Better solutions that use
different logic implementations with a larger number of logic cells
but with predominantly local connections are lost during the tech-
nology mapping. In the "macro block" approach which is currently
used in the industry [1], a technology independent multi-output
representation of a Boolean function is covered with a minimum
number of small standard subfunctions (macros) which have no uni-
form shapes, and local connectivity between macros is not preserved

during the subsequent placement. Consequently, the number of cells
which need to be used for routing between macros is very large. On
average, about 70% of the area occupied by the design in ATMEL
6000 series CA-type FPGAs is used for the routing and non-
programmed cells [1],[2].

Recently, several logic synthesis approaches applicable to
CA-type FPGAs have been presented [13], [15]. The first research
on applying variable ordering in factorization is reported in [12].
The approaches based on trees and decision diagrams [6] have also
been reported [13], [15]. In some cases, however, when the circuit is
finally mapped to a rectangular area, the triangular structure of the
tree/DAG decomposition may waste a large amount of area for rout-
ing. In a search for more efficient approach, new spectral methods
based on orthogonal expansions and Universal XOR Forms [10]
were introduced recently. These methods as well as the algebraic
restricted factorization method presented in this paper are based on
the ideas from the classical cellular arrays. While the spectral
methods are more general and usually lead to a better solution, the
algebraic one introduced in this paper leads to much more efficient
algorithms.

Cellular arrays were studied extensively during sixties and
seventies [7], [8], [9]. However, the connectivity patterns of cells
were too restricted and the buses were mostly absent. Because of
these limitations the number of cells grows rapidly, often exponen-
tially. Therefore, the classical cellular arrays were never commer-
cialized, and the PLD and FPGA technologies were developed with
no reference to them. New CA-type FPGAs introduce more power-
ful logic blocks, more local connections and local and global busses
for improved communication over longer distances.

Therefore, we propose here a totally new approach to com-
bined logic synthesis and physical design. We restrict ourselves to
the simplified model composed of two distinct planes: the complex
(input) plane and the collecting (output) plane. The input variables
of the input plane are in vertical buses. The linear sequence (a row
of the input plane) of AND, OR and EXOR operators with
corresponding literals is called a Maitra term. The outputs of the
Maitra terms are given to horizontal buses. The Maitra term is there-
fore a generalization of the AND term (product term). The name
"Maitra term" comes from "Maitra cascades" [7]. The Maitra terms
are collected in output_plane composed of the two-dimensional
array with OR or EXOR gates. This two-dimensional logic array
will be called the "Complex Maitra Logic Array" (CMLA). The
CMLA concept, shown in Fig.1, is a powerful generalization of
PLAs. In addition, similar to PLAs and gate matrix layout, our
CMLAs can be folded in many ways. Unfortunately, our problem is
more complex, and all well-known algorithms for PLA folding and
gate-matrix problems [3,4,5] can only be used to solve some parts of
the technology folding problem. The paper illustrates our general
approach on ATMEL6000 Series of FPGAs as the target architec-
ture. The approach, however, can be adopted to other CA-type
FPGAs, such as Motorola, Algotronix or Pilkington.

The paper is organized as follows. In Section 2 we present
our general approach and define Maitra terms. Section 3 formally
introduces the mathematical apparatus necessary to create the com-
plex terms and gives the description of the algorithm. The solution
method to the technology folding problem is discussed in Section 4.
In Section 5 the detailed example is presented. Results and conclu-
sions are given in Section 6.

2. OUR APPROACH

The comprehensive approach to the logic and layout syn-
thesis for CA-type FPGAs includes two stages:

1. Logic optimization which takes the geometry and layout con-
straints into account to create a CMLA in which every output
function is an OR or EXOR of Maitra terms.

2. Technology-folding which maps CMLA representation of the
function to the target architecture, such that the area of the
layout is minimized.

Each of the above stages can be solved in several ways. In
this paper, we illustrate the logic synthesis stage with the restricted
factorization method, which is a general approach not associated
with any specific CA-type FPGA. The second, technology folding
stage consists of two parts: folding of the complex_plane (input),
and folding of the collecting_plane (output). Technology dependent
constraints of ATMEL FPGA architecture are used to illustrate the
complex_plane folding. Output_plane folding is more general and
does not depend that much on the particular chip architecture as only
OR and EXOR gates are used, and will not be discussed here.

A generic model of the CA-type FPGA consists of the array
of logic blocks each connected with its s neighbours through input
and output connections. Each logic block can use up to n inputs
from the neighbours and produce up to m outputs to its neighbours.
In addition, k inputs from local buses, vertical and horizontal, can be
used by each logic block. Outputs can be also assigned to l local
buses, vertical and horizontal. The logic block can realize some set
of logic functions. Since this method can be really effective for
small granularity blocks, logic blocks should be kept rather small.
For the purpose of simplicity we assume that they are limited to a
finite set of simple logic gates, which includes an EXOR gate. A
number of inputs and outputs should also be small. The schematic
picture of such architecture is shown in Fig.2.

2.1. Maitra terms and Complex terms

Definition 1A. A forward Maitra term is defined recursively as fol-
lows:

1. a literal is a forward Maitra term.

2. if M is a forward Maitra term then M a , M ad, M ⊕ a , M
⊕ ad , M + a , and M + ad are also forward Maitra terms if no
literal or its complement appears in the string more than once.

Definition 1B. A reverse Maitra term is defined recursively as fol-
lows:

1. a literal is a reverse Maitra term.

2. if M is a reverse Maitra term then a M , ad M , a ⊕ M , ad ⊕
M , a + M , and ad + M are also reverse Maitra terms if no
literal appears in the string more than once.

Forward and reverse Maitra terms are called simple Maitra terms.

Definition 1C. A bidirectional Maitra term has the form

M1 operator M2

where operator is a Boolean function of two arguments, M1 is a
forward Maitra term, and M2 is an reverse Maitra term, such that
M1 and M2 have different sets of variables and do not exhaust
together all input variables of the function.

Definition 1D. A complex Maitra term (complex term for short) is a
forward Maitra term, a reverse Maitra term, or a bidirectional Maitra
term.

Each of the following expressions represents a forward Mai-
tra term: (a bd) + c , (a + b) c , (a ⊕ b) + cd, ((c bd) + a) ⊕ d . And,
each of the following expressions represents a reverse Maitra term:
c + (a bd), c (a + b). The expression ((a b) + bd) c is not a Maitra
term because the literal b

.
appears twice. Similarly, a + (b cd) + d is

not a forward Maitra term because it cannot be generated from the
forward Maitra term definition (analyzing the expression from right
to left, a + (b cd) is not a forward Maitra term). However, if the
order of variables is changed to b , c , a , d , then (b cd) + a + d
becomes a forward Maitra term.

M1 ⊕ M2 = {(ab) + c} ⊕ {e (f + g)} is a bidirectional term of func-
tion f (a , b , c , d , e , f , g) since M1 is a forward term on variables
{a , b , c }, M2 is a reverse term on variables {e , f , g }, sets
{a , b , c } and {e , f , g } are non-overlapping, and variable d is not
used in any of these sets.

These examples show that whether a given logic expression
is a Maitra term or not, depends on the order of variables in this
expression. Some expressions which are not Maitra terms can
become Maitra terms by changing the order of variables. For every
order of input variables, a Boolean function can be decomposed to
an OR or EXOR of Maitra terms. This is always possible, since the
AND terms (used in SOPs and ESOPs) are particular cases of the
Maitra terms. The example of CMLA is shown in Fig.3.

3. RESTRICTED FACTORIZATION THEORY

The new method called restricted factorization based on cube
calculus operations [11], [14] is described. The algorithm to com-
bine product terms to complex terms is based on calculating the
difference and the distance of the cubes for every pair of cubes
representing product terms. This is used to decide whether two pro-
duct terms can be combined to a complex term. It also determines
the cases when the cubes need to be reshaped in order to increase the
possibility of re-combining them. This reshaping is done using the
exorlink operation.

3.1. Definitions

In positional cube notation, a literal with a positive polarity (a
variable with no negation) is coded as 10, a literal with a negative
polarity (a variable with negation) is coded as 01, and a missing
literal is coded as 11.

Definition 2. The distance of two terms is the number of variables
for which the corresponding literals of these terms have different
polarities.

Definition 3. The difference of two terms is the number of variables
for which the corresponding literals of these terms have different
values.

Here "different values" means different codings, and "different
polarities" means disjoint codings. For instance, 11 and 10 are dif-
ferent values, 10 and 01 are also different values. For binary logic,
the only case of different polarities are 10 and 01. The difference of
two product terms Ti and Tj is indicated by dif f erence (Ti , Tj) = d′ .
Similarly, the distance of Ti and Tj is indicated by
distance (Ti , Tj) = d′′ .

Example 1. Given are three terms T 1 = a c , T 2 = ad b d , and T 3 =
b cd d . The difference of T 1 and T 2 is 4, because all four pairs of
literals are different. The distance of T 1 and T 2 is 1, because the
literals of variable a have different polarities. The difference of T 2

and T 3 is 2, because variables a and c have different literals. The
distance of T 2 and T 3 is 0, because no literal has different polarities.

Let T 1 = x̂ 1 ... x̂n and T 2 = ŷ 1 ... ŷn be two terms. The exor-
link [14] of terms T 1 and T 2 is defined by the following formula:

T 1 ⊗ T 2 = ⊕ {x̂ 1
. . . x̂i −1 (x̂i ⊕ ŷi) ŷi +1

. . . ŷn

| for such i = 1, ..., n , that x̂i ≠ ŷi }
Example 2. Given two product terms a b e and a bd c d e . The
exorlink of these two terms is

a b e ⊕ a bd c d e = a c d e ⊕ a b cd d e ⊕ a b dd e .

An exorlink operation generates a set of resultant product
terms. It is explained in [14]. The number of resultant product terms
is equal to the difference of the two given product terms.

Definition 4. Two product terms T 1 and T 2 are directly combinable,
if these two product terms are in one of the following forms,
(1) T 1 = x

.
1 x

.
2

. . . x
.
i −1 x

.
i +1

. . . x
.
n

T 2 = y
.
i y

.
i +1

. . . y
.
n

x
.
j = y

.
j for j ≥ i +1

(2) T 1 = x
.

1 x
.

2
. . . x

.
i −1x

.
i x

.
i +1

. . . x
.
n

T 2 = y
.
i +1

. . . y
.
n

x
.
j = y

.
j for j ≥ i +1

In equation (1), the two product terms can be combined to
(x

.
1 x

.
2

. . . x
.
i −1 ⊕ x

.
i) x

.
i +1

. . . x
.
n

Example 3. a b d e ⊕ c d e = (a b ⊕ c) d e .

In equation (2), the two product terms can be combined to
(x

.
1 x

.
2

. . . x
.
i −1 x

.
i ⊕ 1) x

.
i +1

. . . x
.
n =

(x̃ 1 + x̃ 2 + . . . + x̃i −1 + x̃i) x
.
i +1

. . . x
.
n

here x̃i indicates the negation of x
.
i .

Example 4. a bd c d e ⊕ d e = (a bd c ⊕ 1) d e = (ad + b + cd) d e ,
the two product terms are directly combinable.

3.2. Checking if two terms are combinable.

The criteria for combining product terms are based on calcu-
lating the difference, the distance and other properties of the two
terms. Let us observe that in case of ESOP minimization, two pro-
duct terms can be combined only if their difference ≤ 1. However, in
case of restricted factorization there are more opportunities to create
complex terms.

Example 5. Given are two product terms a bd e and a b cd d e . The
difference of these two terms is 3. So, these two terms can not be
combined into a product term. They can, however, be combined into
complex terms as follows: a bd e ⊕ a b cd d e = a bd e + a cd d e =
a (bd + cd d) e = (cd d + bd) a e .

For convenience, two given product terms in the forms
T 1 = x̂ 1 x̂ 2

. . . x̂n and T 2 = x̂ 1 x̂ 2
. . . x̂n are assumed. Without loss

of generality, it is assumed that the pairs of literals which have dif-
ferent values appear at the left side in the terms.

Case when difference(T 1, T 2) = 0.

Difference = 0 means these two terms are identical. In case
of an ESOP, since A ⊕ A = 0, these two product terms can be
removed. In case of a SOP, since A + A = A , one of the terms can
be removed.

Case when difference(T 1, T 2) = 1.

(1) If distance(T 1, T 2) = 0, then x̂ 1 appears only in one term.
Since 1 ⊕ a = ad, these two product terms are directly com-
binable.

(2) If distance(T 1, T 2) = 1, then x̂ 1 appears in both terms, but in
different polarities. Since a ⊕ ad = 1, these two product
terms are also directly combinable.

Theorem 1. If the difference of two product terms is greater than 1,
then these two product terms are directly combinable if and only if

their distance is 0 and from all the literals that do not appear con-
currently in both terms only one literal can appear in a term.

Definition 5. Two product terms are referred as combinable either
when these two product terms are directly combinable or if they can
become directly combinable by reshaping them.

Theorem 2. If difference(T 1, T 2) ≤ 2, terms T 1 and T 2 are combin-
able.

Other cases of combinability of product terms for various
values of difference and distance are taken into account in the algo-
rithm to generate complex terms which are not discussed here. Dur-
ing the transformation from product terms to complex terms, some
SOPs may be created from initial ESOPs, and vice versa. The SOP
transformations similar to the above ESOP transformations have
been formulated.

The basic steps of the algorithm to create complex terms
from product terms are given below. Combinability graph is a com-
patibility graph, with the compatibility relation substituted with
combinability relations.

1. For each pair of product terms Ti and Tj if the terms are com-
binable, record all possible variable orderings for the pair;

2. Build the adjacency matrix for the combinability graph;

3. Create a priority list of complex terms in the decreasing order
of the number of adjacents, and adjacents of their adjacents in
the combinability graph.

4. The order of the variables in the maximum clique which does
not violate all possible combinabilities in the clique is chosen
as the ordering of input variables.

5. For each group of product terms in the priority list, with the
chosen order of input variables, generate the complex terms

6. Add all terms not included in the complex terms generated in
step 5.

4. TECHNOLOGY FOLDING

Once an optimized set of complex terms has been identified
for a given multi-output function f, folding techniques are used to
even more economically utilize the FPGA cells. To minimize the
area, a proper matching of complex terms is found such that the
number of rows occupied by complex terms is minimized. These
folding techniques depend on the specific architecture of the FPGA
which could allow different compatible terms to be placed on the
same row. This problem may look similar to the well known prob-
lem of multiple column folding [3], however, the basic difference is
that we do not change the order of variables, which is fixed after
complex term generation, but we choose the best combination of
complex terms, which can be assigned to the same row due to archi-
tecture constraints.

4.1. Folding for ATMEL6000 Series

The possible gates that can be utilized in ATMEL6000 are an
inverter, an AND, OR, EXOR, NAND gate, a wire and their combi-
nations [1]. A number of available inputs is limited to three and out-
puts to two. Only one input can be taken from the local bus, and a
number of local busses is limited to four. Each cell has connections
to four neighbors. Based on the above architecture limitation the
number of complex terms which can be folded into one row is six.
The complex terms can be accessed from the left-most cell, the
right-most cell, and the two local busses. Because each cell has two
outputs, denoted by A and B, which are available for all neighbours
the total number of complex terms which can be accessed in one
row is six. We assume the following signal assignments. The verti-
cal local busses in the complex_plane carry both input variables and

their negations for each column. The cell personalized to the OR
gate uses only output of type A.

AB Parallelismiiiiiiiiiiiii

The conditions for placing two complex terms in one row of
ATMEL using the "A" and "B" inputs and outputs going horizon-
tally through the row are defined. The input variables are assigned to
the vertical busses in a given order. We assume that the order
increases from left to right. Therefore, the left-most input variable
will be in lowest position. Moreover, the instance of a literal in a
complex term with the lowest order will be referred to as the initial
literal and will be denoted by C i where C is some term. The literal
with the highest order will be referred to as the last literal and will
be denoted by C l . The set of all literals appearing in a term j will be
referred to as the literal_set and will be denoted by SLj .

A complex term can be a product, a sum, an exclusive-sum or
a combination of any of the above. A monoterm, which is a product
of literals, will be referred to as a product_line and will be denoted
by P . A monoterm which is only comprised of summation of literals
will be referred to as a sum_line and will be denoted by S . A
monoterm which is only comprised of exclusive summation of
literals will be referred to as a exsum_line and will be denoted by X .
A term which is comprised of sums and products of literals will be
referred to as a sum_product_line and will be denoted by C .

The literal_distance, denoted by d , between two literals is
the difference between their indices. As an example the distance
between b and c , if placed in alphabetical order is 1. A continous
term (denoted by Q) is one that has a continuous literal set, i.e. for
any literal besides the initial and final, there exists two literals with
distance 1 in the literal set (for initial and final literal there exists one
literal with this property).

Two terms Ci and Cj , with SLi ∩ SLj ≠ 0, are AB-Parallel if
they can be placed in the same row of the CA-type FPGA, and will
be denoted by <Ci , Cj > where Ci and Cj are the two terms. Possible
matching types are given below. In the examples we have assumed
that the variables are assigned in the alphabetical order.

TYPE_1. <P 1, P 2> such that SL 1 ∪ SL 2 = SL ∈Q and
SL 1 ∩ SL 2 = P 1

i .
e.g. <P 1, P 2> = <a , abcde >; <ae , abcd >; <ade , abc >; where
SL = {a , b , c , d , e }.

TYPE_2. <S , P > such that SLP ∈ SLS , SLP ∈ Q , and S l ∈ SLP .
e.g. <S , P > = <a + b + c + d , abcd >; <a + b + c + d , bcd >;
<a + c + d , cd >; <a + b + c + d , d >.

TYPE_3. <P , S > such that SLS ∈ SLP , and SLP ∈ Q .
e.g. <S , P > = <abcd , a + b + c + d >; <abcd , b + c + d >;
<abcd , b + d >; <abcd , a + c >.

TYPE_4. <C , S > such that d (CS
l , CP

i) ≥ 1, CS ∈ Q , CP ∈Q
and SLS ∈ SLC

P
.

e.g. <C , S > = <(a + b +c)def g , d + f >.

TYPE_5. <C 1, C 2> such that SLS 1 = SLS 2, SLP 1 ∪ SLP 2 ∈Q ,
SLP 1 ∩ SLP 2 = SLP

i and d (SLS 1
l , SLP 1

i) ≥ 2. Where SLP 1 denotes
the product part of the first term. (Sum_line can be substituted with
exsum_line.)
e.g. <C 1, C 2> = <(a + b +c)d , (a + b +c)df g >.
e.g. <C 1, C 2> = <(a ⊕ b ⊕c)d , (a ⊕ b ⊕c)df g >.

TYPE_6. <C 1, C 2> such that SLS 1 = SLS 2, SLP 1 ∪ SLP 2 ∈Q and
CS

l < (CP 1
i − 1) and CS

l < CP 2
i . (Sum_line can be substituted with

exsum_line.)
e.g. <C 1, C 2> = <(a + b + c)ef , (a + b + c)gh >.
e.g. <C 1, C 2> = <(a ⊕ b ⊕ c)ef , (a ⊕ b ⊕ c)gh >.

L-Placeabilityiiiiiiiiiiii

L-Placeability refers to the terms that can have their outputs
put on a local bus L. The following are the possible cases of L-
Placeability:

1. The AB-Parallel terms of TYPE_1.

2. The sum_line part of AB-Parallel terms of TYPE_2.

3. A single primary input.

The terms that can be placed in the same row will be referred
to as being row compatible or R-compatible. Some additional res-
trictions are introduced if multioutput functions are considered.

Row Compatibilityiiiiiiiiiiiiiiii

1. Two AB-Parallel terms are R-compatible. If the terms belong to
more than one output, they have to be L-placeable in order to be R-
compatible.
2. An L-placeable set of TYPE_1 and another AB-Parallel set are
R-compatible if the distance between the last literal of the first set
and the first literal of the second set is at least two.
e.g. <ad , abc > and <f + g + h + i , f ghi >.
3. An L-placeable term of TYPE_2 and AB-Parallel set of TYPE_5
are R-compatible if the sum_lines (exsum) of all three terms are
identical.
e.g. <a + b + c > and <(a + b + c)e , (a + b + c)ef g >.
4. An L-placeable term of TYPE_2 and a sum_line (exsum) which
includes the L-placeable term as lower order literals and its higher
order literals start with a distance of two from last literal of the L-
placeable term and are continuous, are R-compatible. <S 1, S 2> such
that SL 1 ∈ SL 2, d (SL 1

l , SL (S 2 − S 1)i) ≥ 2, S 2 − S 1 ∈ Q . Where
"−" denotes the difference of the literal sets; i.e. all literals which are
in the first set and not in the other.
e.g. <a + c + d > and <a + c + d + f + g + h >.
5. An L-placeable term of TYPE_2 and an AB-Parallel set of terms
of TYPE_1 are R-compatible if the distance between the last literal
of the sum-line (exsum) and the first literal of the AB-Parallel set of
terms is at least two.
e.g. <a + b + c > and <e , eg >.
6. An L-placeable term of TYPE_2 and a sum-product-line which
includes the L-placeable term as summation part and its product
literals start with a distance of two (≥ 1 for exsummation) from the
last literal of the summation part and are continuous, are R-
compatible. <S , C > such that CS = S , d (SLS

l , SLP
i) ≥ 2, CP ∈ Q .

e.g. <a + c + d > and <(a + c + d) f gh >.
7. All R-compatibilities involving L-placeable term of TYPE_2 are
applicable to L-placeable terms of TYPE_3. The difference is that
the sum_lines in TYPE_2 terms are replaced by a single variable.

For multi-output functions, it is assumed that the complex
terms which need to be EXORed in the collecting_plane are all on
horizontal local busses. The possible row folding is shown in Fig.4.

The basic steps of our approach to the technology folding are
presented below.

1. Identify terms which are R-compatible and these which are
non R-compatible.

2. Construct the compatibility graph CG(V,E).

3. Find an optimum clique covering, with clique sizes smaller
or equal to the maximum number of terms which can be
placed in the same row (here 6).

4. Start with vertices with the smallest vertex degree, which
belong to the cliques of the largest permitted sizes. Assign
them to one row.

5. Assign all remaining vertices, which are connected with at
least one edge to the graph.

6. Assign all remaining unconnected nodes to different rows.

As it can be observed, the method is general while the type of R-
compatibilities and the maximum size of the clique varies with dif-
ferent architectures.

5. A DETAILED EXAMPLE

An MCNC benchmark function SQUAR5 is used to show
how the product terms are factorized to complex terms. SQUAR5
has 5 input variables and 8 output variables. By first using
EXORCISM-MV-2 [14] the original function is reduced to 19 pro-
duct terms as shown in Table I. To find an optimum order of input
variables, at first, each pair of product terms is checked for combina-
bility. If they are combinable, the desired order is recorded. For
instance, the first row and the fourth row are a pair of candidates,
since a c and a b d can be factorized as (b d ⊕ c) a . The desired
order is (b d c a). Creating desired orders is repeated until all the
pairs of product terms are checked. All the desired orders are
recorded. The best order selected is: (d b c a e). Based on this
order, the complex terms are generated (Table II). For instance, row
1, a c and row 4, a b d can be factorized as t2 = (d b ⊕ c) a . Let
us observe that the complex terms t3, t4, and t5 are reverse Maitra
terms, and all other complex terms generated are forward Maitra
terms. There are no bidirectional terms in this example.

In this example, 19 product terms are factorized to 15 complex
terms, t1, ..., t 15. The intermediate result at this point has 15 rows
and 13 columns. Five columns are needed for inputs and eight
columns for outputs.

6. RESULTS AND CONCLUSIONS

The main technical contribution of this paper is the proposi-
tion of a comprehensive design methodology for CA-type FPGAs.
This methodology has several important advantages. It merges the
stages of logic synthesis and layout synthesis into a single stage,
making use of the regularity of structure. The structure of the map-
ping solution is a regular array, which is good for several existing
technologies. Our approach takes also advantage of the fact that
two-input AND, OR or EXOR gates with subsets of negated inputs
can be mixed in rows and columns of the array, creating thus the
(complex) Maitra terms and the collecting columns.

The results of the evaluation of our approach to technology
folding on a set of benchmark functions are presented in Table III.
The number of input variables is shown in column 2, and the
number of outputs in column 3. In column 4 a number of
column_terms, which are present in the ESOP function representa-
tion before folding, and in column 5 after folding are shown, respec-
tively. The average improvement on this set of benchmarks is 17%.
It can be noticed that for some functions there was no improvement
and for some the improvement was marginal. But for majority of the
tested examples the improvement was significant and as high as
39%. These results can still be improved once some of the new
ideas will be incorporated.

The methodology proposed by us is totally new and must be
thus tested on many more practical examples, together with the pre-
and post-processing algorithms. Currently the most severe limita-
tion of the method is the size of circuits that we can deal with.
However, the method can be applied to parts of a circuit which was
first partitioned or decomposed using general methods. It can be thus
treated as a generator of large custom macro-blocks.

The CMLA concept is well suited for both fine-grain Field
Programmable Gate Arrays (FPGAs) and ASIC design. Although
the algorithm presented in this paper is particularly tuned to Atmel
architecture, the results of this paper can be also used for other CA-
type FPGAs, for example the Motorola chip.

ii
benchmark #in #out non-fd foldedii
5xp1 7 10 33 25
add6 12 7 128 122
adr2 4 3 8 4
cadr4 8 5 32 25
cmlp4 8 8 62 50
cnrm4 8 5 70 62
f51m 8 8 32 28
mlp3 6 6 19 13
rd53 5 3 15 12
rd73 4 3 39 34
sao2 10 4 29 27
sqr6 6 12 35 19
squar5 5 8 19 12
t481 16 1 14 10ii
Total 535 443iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

TABLE III. Benchmark Examples

REFERENCES

1. ATMEL Corporation CMOS Integrated Circuit Data Book, 1993,
1994. 2125 O’Nel Drive, San Jose, CA, 95131.
2. Concurrent Logic, Inc., Seminar at PSU, Nov. 17th, 1992.
3. D.F. Wong, H.W. Leong, C.L. Liu, "Multiple PLA folding using
the method of simulated annealing," Proc. Custom Integrated Cir-
cuit Conf. May 1986.
4. Y.H. Hu and S.J. Chen, "GM_Plan: A Gate Matrix Layout Algo-
rithm Based on Artificial Intelligence Planning Techniques," IEEE
Trans. on CAD, Vol. 9, No. 8, pp. 836-845, August 1990.
5. S. Huang, O. Wing, "Improved Gate Matrix Layout," IEEE Trans.
on CAD, Vol. 8, No. 8, pp. 875-889, August 1989.
6. U. Kebschull, E. Schubert, W. Rosenstiel, "Multilevel Logic Syn-
thesis Based on Functional Decision Diagrams," Proc. IEEE Euro-
pean Design Automation Conference, pp. 43-47, 1992.
7. K. K. Maitra, "Cascaded Switching Networks of Two-Input Flexi-
ble Cells," IRE Trans. Electron. Comput., Vol. EC-11, pp. 136-143,
1962
8. A. Mukhopadhyay, "Unate Cellular Logic," IEEE Trans. on
Comput., Vol. 18, No. 2, pp. 114-121, February 1969.
9. A. Mukhopadhyay, "Cellular Logic," in "Recent Developments in
Switching Theory," Ed. Mukhopadhyay, A., pp. 281-285, 1971,
Academic Press.
10. M. A. Perkowski, A. Sarabi, and F. R. Beyl, "XOR Canonical
Forms of Switching Functions," Proc. of the IFIP WG 10.5
Workshop on Applications of the Reed-Muller Expansion in Circuit
Design, September 1993 Hamburg, Germany, pp. 27 - 32.
11. R. Rudell, A. Sangiovanni-Vincentelli, "ESPRESSO-MV:
Algorithms for Multiple-valued Logic Minimization," Proc. IEEE
Custom Integrated Circuits Conf., 1985.
12. G. Saucier, J. Fron, and P. Abouzeid, "Lexicographical Expres-
sions of Boolean Functions with Application to Multilevel Syn-
thesis," IEEE Trans. on CAD, November 1993, pp. 1642 - 1654.
13. I. Sch"afer, M.A. Perkowski, H. Wu, "Multilevel Logic Synthesis
for Cellular FPGAs Based on Orthogonal Expansions," Proc. IFIP
WG 10.5 Workshop on Applications of the Reed-Muller Expansion
in Circuit Design, Sept. 1993, Hamburg, Germany, pp. 42-51.
14. N. Song, M. A. Perkowski, "EXORCISM-MV-2: Minimization
of Exclusive Sum of Products Expressions for Multiple-Valued
Input Incompletely Specified Functions," Proc. ISMVL, pp. 132-137,
Sacramento, May 24-27, 1993.
15. L.-F. Wu, M. A. Perkowski, "Minimization of Permuted Reed-
Muller Trees for Cellular Logic Programmable Gate Arrays," In H.
Gruenbacher and R, Hartenstein (eds.), "Lecture Notes in Computer
Science", No. 705, Springer Verlag, pp. 78 - 87, Berlin/Heidelberg,
1993.

