CHAPTER 8

SYNTHESIS OF REVERSIBLE CIRCUITS 

WITH NO ANCILLA BITS

Maher Hawash, Marek Perkowski and Nouraddin Alhagi

8.1. Introduction. types of algorithms for reversible circuits synthesis.
There are currently two types of algorithms to synthesize reversible circuits: 
(T1) those like MMD [Agrawal04, 3, 4, 7, 9, 10, 11, 14, Maslov03a, Maslov03b, Maslov04, Maslov07, Maslov08, Maslov11, Miller03, Miller03a] that start from a reversible specification, 
(T2) those like [6, 12, 13, Mishchenko01, Mishchenko02, Stedman05, Saedi07, Saedi07a, Saedi07b, Wille08, Wille08a, Wille09] that start from non-reversible specification and create ancilla bits. 
The second type of methods has been successful for large functions [5, 6, Wille08, Wille08a, Wille09] but solves basically a different problem. 
The MMD algorithm [Miller03] (Miller, Maslov and Dueck) is currently the leading reversible logic synthesizer if no ancilla bits are used. Mathematically, the problem is to decompose a large permutation of circuit’s specification to small permutations of reversible gates that are used. MMD uses the permutation vector-like reversible function specification as its input an internal data which corresponds to a truth table that is explicitly used in the synthesis process and, thus, must be stored and processed in memory. Since it is intrinsically bound by the natural binary order of minterms, and hence does not use search, MMD cannot be enhanced through better search algorithms or iterative/recursive routines. MMD processes  a single order of minterms. Hence, MMD is reasonably fast and it distinguishes itself among other programs of this type because it achieves (theoretical) 100% convergence regardless the problem size [Miller03]. Practically, however, it can be applied to at most 8 qubit reversible functions and very few  reversible functions with more than 8 variables were presented as MMD benchmarks in the literature. It was found  that the complexity of both the synthesis process and the average circuit sizes synthesized by MMD grow very quickly above 8 qubits, herein “large circuits”. An approach for large functions was presented in [Alhagi10]. Benchmarks for large functions are given there.    
Consequently, in this chapter, we set the benchmark for future research  (observe that standard non-reversible specifications are used in recent papers [Rice09, Saedi07, Saedi07a, Saedi07b, Wille08, Wille08a, Wille09], and we need reversible functions such as specified by permutations). In any case, at this time MMD program is the current benchmark for the evaluation of programs for reversible circuit synthesis with no ancilla bits. A strong asset of the philosophy used in MMD, in contrast to those used in other programs is that MMD gives a warranty of convergence if the data is small enough for MMD to be able to keep them in memory. Due to the known fact that the quality of MMD may be very low for functions where the exact minimal solution is known, several research groups are constantly attempting to improve on the MMD algorithm.  
8.2. Algorithm of Agrawal and Jha. 

Agrawal and Jha’s algorithm [Agrawal04, 6] uses the number of terms in the Positive Polarity Reed-Muller (PPRM) expansion of synthesized functions as its cost function. As PPRM can be stored by an expression that is shorter than 2n their algorithm could in theory minimize larger functions. On the other hand this algorithm has to store many PPRM equations as it represents a tree-search algorithm. Also, non-factorized PPRMs may be in many cases of similar complexity to truth tables, for instance for function f = a’b’c’d’. Some of the algorithm variants from [Agrawal04, Donald08, 7, 9] have trouble with convergence and there is a trade-off between provable convergence and size of circuits that can be minimized. A challenge thus still exists to create an algorithm that could trade-off quality for time, but with a provable convergence for every function. In this chapter we will present such an algorithm.

8.3. MMD Algorithm of Maslov, Miller and Dueck
To make the chapter self-contained we give a brief overview of MMD. More can be found in [4, 14, Maslov03a, Maslov03b, Maslov04,Maslov07, Maslov08, Maslov11, Miller03, Miller03a]. 
The main idea of all algorithms for reversible circuits synthesis of type T1 is to transform bit-by-bit a reversible function to its identity function. 
Example 8.2.1. Fig. 8.1 illustrates the basic flow of MMD algorithm. The first column lists all input minterms of the function in the natural numerical order(linear): 0, 1, 2, 3, etc. The second column in Fig. 8.1 lists values of the output vectors that correspond to the input vectors from the first column. For instance, the input minterm  a’ b’ c’ = 000 is mapped to the output minterm A’ B’ C’ = 000 and input 001 is mapped to the output minterm 100. Self-mapping minterms  are minterms with matching input and output values (e.g., minterm 000 above) The synthesis process applies successive gates to the output column (ABC), bit-by-bit, to generate the corresponding minterm of the input column (abc).     Recall that Toffoli (Feynman) gates are used that are self-inverse gates (M-1 = M), so they process information the same way from inputs to outputs and from outputs to inputs. The MMD algorithm shown here is thus the “backward searching” or “output to input searching” algorithm.  Since the first minterm is self-mapping, MMD skips to the second minterm applying a controlled- Feynman gate to bit c, shaded, conditional on bit a being set, underscored.   After the application of each gate, the output column minterms (of intermediate functions) become more and more similar to the first column – the column of input vectors. The question is “what does it mean to be more similar?” It is an advantage of general search methods that various measures of complexity or coincidence or similarity have been used [9, 10, 11, Mishchenko02]. This may lead to better and faster solutions but it is hard or impossible to prove convergence. The MMD algorithm has however a very simple and working solution to this problem. It requires that intermediate  columns  remain exactly the same as the input column in some subset of rows from the top. The completed rows, start from row 0, then row 1, row 2 etc. up to the minterm under construction  When some subset of rows from top are completed, they are not allowed to change (shown in shaded areas in Fig. 8.1) which is guaranteed by the selection of proper control bits.
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Figure 8.1. MMD method illustrated with truth tables of intermediate functions. Notation  a ( c means c = c (  a means  “ flip c if a=1”. Control lines are underlined and affected bits are shaded.
This is the main idea of MMD algorithm and actually the only algorithmic idea of this method (excluding templates). The proof that this algorithm is convergent is obvious, as every step creates one more bit in a row from top that is the same in the intermediate column as in the first column.  This way,  after  at most n * 2n - 1 steps (intermediate columns) the last column becomes exactly the same as the first column, and thus, the remaining function to be realized is an identity function (a better bound was also proven by Maslov but it is not relevant here). As we see, the strength of this algorithm is easy convergence, but since the complexity is exponential, MMD is limited in application to  a small number of bits. So far, however, MMD continues to represent the benchmark to meet as no better algorithm had been proposed.  The symbol    a ( c   in the column 1 means that whenever  a = 1 in the previous column, the bit c is flipped from 0 to 1 and from 1 to 0. Hence, this transition from column to column executes the Toffoli gate c = c ( a. The reader may check that the number of completed rows  is either the same or larger from column to column. In this example the upper complexity bound is n * 2 n – 1   which for our 3-bit example yields (3 * 2 3 – 1) 23 gates.  Note that our example simulation resulted in only 6 gates. Here MMD happened to work well. But there are examples [Alhagi10] where the gate number is close to the upper bound although the minimal number of gates is lower.
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Figure 8.2. The solution circuit found from MMD in Fig. 8.1 drawn and created from outputs to  inputs.  The arrow shows the flow of signal from inputs to outputs. This method is possible because each reversible gate used in this figure is its own self-inverse.

 8.4. MMDS and MMDSN Orderings
The main concept of MMD, the  natural binary minterm ordering was challenged in [Stedman05] as the only 100% convergent order.  It was found that MMD’s minterm ordering falls into a subset of orderings that do not exhibit certain important property that was called the “control line blocking”.  This observation lead to the creation of  the “MMDS ordering” [Stedman05]. To make this chapter self-contained, all these ideas will be defined below but first we need to motivate the new concepts. Without any backtracking, any bi-directional search or any template matching, the MMDS ordering used exhaustively were superior for 3-bit circuits [Stedman05]. The MMDS orderings can be used with any number of inputs and have larger gains compared to MMD when the number of inputs increases.   However, the number of MMDS orderings is too high to use all these orderings for synthesis. In this chapter, we introduce a subset of the MMDS ordering, herein MMDSN orderings, which greatly reduces the number of terms examined while providing near minimal solution superior to MMD.
MMD stipulates that the function is arranged in a natural binary code order by inputs assignments.  Each iteration adds a gate in order  to correctly transform the outputs to match the inputs without changing any of the previously completed (from top row) output minterms.  Other innovative algorithms utilized greedy algorithm where gates are chosen to reduce the cost function from input to output.  For example, Hamming Distance determines the choice of gates to transform the output function to the original function or to identity function. Such algorithms did not always converge, unlike, MMD, which, as it  might give the worst solutions, it always converges. The question is, how these two main ideas of natural ordered search of MMD and greedy search can be combined to improve the quality of results and always achieve the convergence.  Such combination is the goal of our research, part of which is discussed here.

The good ordering should not conflict with the main MMD’s idea [Miller03, Miller03a] of not changing any previously set outputs.  This idea is also what guarantees MMD’s convergence. 
A. Definition 8.1
  Control Line Blocking condition occurs when all control lines of the current minterm are a subset of the control lines of a previously completed minterm in the input order.
When this condition occurs it makes it impossible to change any output bits during the current iteration without altering the output bits which have been previously completed.  Occurrence of this condition hinders convergence. 

     Mathematical Check => 

      if #later = #later & #earlier
           then there is control line blocking
Example 8.1  Control line blocking exists
    101        =  101   &    111

Example 8.2  Control line blocking does not exist

    001        =  101   &    011
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Figure 8.3. New orders for MMD-like synthesis. (a) Hasse diagram with binary vectors, (b) Hasse diagram with natural numbers, (c) Ordering of nodes that violates the MMD order, illustrated on the Hasse Diagram. This is however a valid MMDS ordering.

Therefore, any ordering of inputs that does not lead to the occurrence of the blocking condition can be used in an improved MMD algorithm. The method to find all non-blocking permutations for any number of inputs was found in [Stedman05].  No control line blocking seems to be a very restrictive rule.  For a three-input function there are initially 8! (40,320) permutations.  Therefore there are the same number of various orderings. Instantly that number is reduced to 6! Since 000 must come first and 111 must come last.  Using the software, 48 permutations, called MMDS orders, were found to exhibit no control line blocking for all 3*3 reversible functions.  Included in this set is the original MMD ordering.  

The binary vectors of cells (minterms) of a 3 * 3 reversible function can be represented as a well-known Hasse Diagram, where a bit-by-bit domination relation ( 1 ( 0, 1 ( 1, 0 ( 0) is used as an ordering relation (see Fig. 8.3a, b). While binary vectors are used in Fig. 8.3a, the Fig. 8.3b uses natural numbers being counterparts of these binary vectors. The rule says “never to take a dominating node (number)  before a dominated node”. Thus 5 cannot be taken before 1, for instance. As we see, MMD order satisfies these rules. Another good orders are shown in Figs. 8.3c and  8.4.

As the number of input lines increases, the number of non-blocking orderings increases exponentially.  For functions with four inputs, Stedman [Stedman05] reported that 78,880 different non-blocking permutations exist.  We however discovered that 1,680,382 such non-blocking permutations exist.  As the amount of non-blocking orders increase so does the optimality of the MMDS orderings, and as a result, the time required to synthesize.  With MMDSN order, a set of rules were created to distill the best possible control choices from the set of all possible control line choices, as follows:
· The target bit cannot be used to control the current transformation,

· Use minimal number controls bits  necessary to flip the target bit,

· No past outputs can be changed,

· Process 0 ( 1 transitions first to maximize availability of control lines, and hence, guarantee convergence.

The control possibilities are then sent to the gate choice function to produce a circuit.  Currently gate choice is based on Hamming Distance but it can be any cost function  [Agrawal04, Alhagi10, 10, 11, 12, Mishchenko02, Wille08]. Using control line blocking as the only rule, a subset of all input orders can easily be found, and it can be easily proven that all non-blocking input orders will converge for all output permutations.
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Figure 8.4. New ordering  02134657 for MMD-like binary synthesis, a valid MMDS order which is consistent with the Hasse diagram relations of order.
B. Theorem 8.1.
All non-blocking input orders converge for all output permutations. 

1) Proof of Convergence:

Convergence is guaranteed in MMD and MMDS because at any given point in the algorithms all following output bits are able to be changed without altering any previously set outputs.  This is guaranteed because the input orders do not exhibit control line blocking.  With MMD and MMDS’ methodical approaches,  as long as all output bits can be changed without altering any previously set outputs these algorithms will converge every time.

MMDS set of orders is a superset of MMD's.  Our improved algorithm uses multiple MMDS input orders that exhibit no control line blocking.  Included in these orders is the MMD natural binary order.  MMDS ordering algorithm performs the same bit manipulating strategy for all non-blocking input orders, and reduces the circuit more than the standard MMD algorithm.  This outcome is obvious, given that MMD is a subset of MMDS, so it can perform no worse than MMD.  

C. Definition 8.2.
 MMDSN order is one in which the minterm 00…0 is generated first, followed by all minterms with a single one(1) in random order, followed by all minterms with two ones (1’s) in random order, and so on, successively incrementing the number of ones (1's) in each band until we finally reach the minterm 11…1.

Example for 3 variables: MMDSN order is for instance: 000, 100, 010, 001, 110, 101, 011, 111. This is also a MMDS order but not MMD order.

	# bits
	Function
	MMD
	MP

	
	
	Gates
	Q-Cost
	Time(ms)
	Gates
	Q-Cost
	Time(ms)

	4
	hwb4
	24
	120
	0.577 
	19
	91
	339

	5
	hwb5
	62
	498
	0.033
	53
	389
	392

	6
	hwb6
	164
	1,800
	0.075
	140
	1,276
	613

	7
	hwb7
	382
	5,614
	0.247
	353
	4,961
	1503

	8
	hwb8
	883
	17,927
	1.312
	837
	15,873
	987

	9
	hwb9
	2050
	52,318
	4.171
	1993
	48,817
	4,170

	10
	urf3
	3426
	119,986
	12.595
	3334
	110,910
	58,306

	11
	urf4
	10527
	456,139
	75.780
	10336
	403,184
	384,589


Figure 8.5. Comparison of numbers of gates and quantum costs of MMD and MP algorithms for reversible functions with various numbers of bits. This is “large circuits” variant with k=5000. No ancilla bits.
8.5. Algorithm MP
After many failed attempts at creating better minimizers based on other search strategies [Alhagi, 13, Mishchenko02, Stedman05], we decided to improve MMD. The main weakness of MMD is that it is limited to functions of the size that their truth table (exponential size) can fit in memory. This limits practically MMD's approach to about 13 variables. Because of its design principle, even with big speed penalty MMD just cannot minimize larger functions. Thus an improved algorithm has to use an entirely different representation. When it was decided to use an internal representation other than a truth table or a spectrum with 2n minterms, the problem was “what is the best representation that would still guarantee  convergence?” Kerntopf used a new type of decision diagrams but did not prove the convergence and, as a result, his method only worked for 3 variables. In unpublished research we used ESOPs and FPRMs rather than PPRM but we were not able to find a heuristic that would work better than the variants from [Agrawal04, Donald08, 7, 9]. Other cascade types have been also proposed in the newer versions of composition-based search approaches [11, Mishchenko01, Mishchenko02, Alhagi] but there were troubles with either the size of solutions or convergence.  Here we present a search method that is both convergent, allows for synthesis of large functions, and produces near minimal solutions. This algorithm includes variants which are various  generalizations of MMD.

8.5.1. Ideas. 

Earlier attempts at improving MMD algorithm resulted in very good/minimal solutions for some circuits or non-converging/incorrect circuits for others [Alhagi10, 10, 11, Mishchenko02, Stedman05].  Thus the order of selecting outputs to be covered by gates was found experimentally to be more important than the gate heuristics to choose gates. For larger number of variables, a variant of our algorithm was created based on the following principles: 

(1)  Rather than maintaining a set of tables mapping inputs to outputs, the algorithm creates these columns implicitly, simulating minterms one-by-one.  The simulator uses the equations from the specification together with the part of the already constructed reversible circuit.  To demonstrate the concept, imagine two circuits similar to Fig. 8.2 cascaded back to back and simulated from inputs at each stage of minterm transformation. The first circuit,  described by equations, represents the function under synthesis, and the second circuit is the outcome of synthesis (in reverse order of gates). When the synthesis process completes, two equivalent circuits, one mirror of the another exist, where the first circuit is specified by equations, and the second by reversible gates (in reverse order of gates). When we simulate this composed circuit, for every input minterm, the same minterm is obtained at the outputs of the concatenated circuits, and hence, the concatenated circuits together are a reversible identity. Since the circuits mirror one another, the solution is represented by the second circuit of the concatenated whole.

(2) A number k of randomly selected MMDSN orders are generated representing the function under synthesis. The solution with optimal cost is selected  with the possibility of backtracking if the temporary cost exceeds the minimum cost determined earlier in the process.

(3) When possible, template matching method from MMD is used on the result for post-processing to further improve the quantum cost.

8.5.2.  Results of  MP for Four Variables
For functions of four variables, we created a set of randomly generated four-bit reversible functions, AHP1-AHP50, and synthesized them using the original MMD, MMDS and our MP orders.  For MMDS and MP, we tested the AHP functions against all possible permutations and calculated the minimum possible gate count as shown in Table 8.1.  It is evident that our selective order consistently produce superior results compared to the single MMD order for a negligible time penalty. Notice , however, that although the MMDSN order did not generate the optimal gate count generated by MMDS, the time advantage of MP is huge at 4 bits, and would be astronomical at greater number of bits.  Even at higher number of bits, MMDSN order consistently produces better results than MMD within tolerable time.  For example, at 11 bits, MP accrued a saving of 191 gates taking about six minutes to synthesize 5000 MMDSN sequences selected at random, and maintaining the solution with the best gate count.  Although the current implementation of the MP algorithm does not utilize parallel processing, the algorithm is prime for parallelization through threading, multiprocessing or within a cloud infrastructure.  Such capability would allow for synthesizing a selecting a larger iteration variant (k) and thus produce even larger circuits.  The reader should note that in this study, neither MMD or MP used local optimization techniques, e.g. template matching, which would ideally reduce the number of gates even further.  Although MP would run even slower with template matching, its inclination to parallelization would easily minimize such an impact.  An additional advantage of MP approach is that we can have a trade-off – the longer we run the new combined algorithm the better is potentially our result. This property is missing in both MMD and Agrawal/Jha approaches.

8.5.3. Results of  the MP for more than four Variables
Table 8.2 shows the results with k = 5000 produced with a single threaded application on a Windows 7 operating system running on a Intel® Core™2 Duo 2.93 GHz processor. The application allows the user to k to any value to get the trade-off between synthesis time and quantum cost improvement. As of this writing, we were not able to compare MP with original MMD on larger functions since MMD does not accept functions of 30 variables as it is not able to store a vector with 230 rows in memory. 
As we see in Table 8.2, the improvement here is best for functions with less than 7 variables, which means that k should be increased. To understand the limitation of our approach for very large functions we created 10 randomly generated reversible functions of 30 variables [Alhagi10], which were input as separate equations for each bit (this variant of MP is not format compatible with MMD and other programs). Such large benchmarks do not exist in literature. For instance, function Chal30, shuffled 1,073,741,824 times (230 times), number of gates generated 430,296 (calculated by program MP, not RCV, circuit was so large that quantum cost software did not work). We run 20 orderings, it took 1 hour and 9 minutes to run. Results for other benchmarks from this set are similar.  The results of MP are available on http://www.quantumlib.org.
8.5.4. Conclusions ON MP.
We presented a new algorithm MP to synthesize reversible circuits in the spirit of MMD.  As the algorithm is a generalization of MMD, it can never create solutions worse than those by MMD. But it can create results of smaller cost and can find solutions to problems that are too large for MMD to handle. Our algorithm does not require to store the large truth table or other exponential representation as it calculates the values in the run from the logic equations. Although MP still needs an exponential number of simulations, it does not need to store exponential data. Also we use many orders of minterm creation which leads to more efficient circuits. However, we pay the price of a slower synthesis process. The results have been also extended to synthesis of incompletely specified functions and ancilla bits [Alhagi10] and state machines [Kumar07, Kumar08]. As the reversible logic is still a research rather than industrial topic, speed of obtaining the solution seems to be less important than exploring larger circuits and being able to evaluate their quality. The trade-off that exists in MP between the time and cost of solution helps in this research. 

8.6. Recent research on reversible circuits with no ancilla qubits

to be added.
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	Function
	MMDSN
	MMD
	MMDS

	
	# Gates
	Q-Cost
	Time (ms)
	# Gates
	Q-Cost
	Time (ms)
	# Gates
	Q-Cost
	Time (ms)

	AHP-
	0
	18
	102
	8.393
	20
	144
	1.074
	15
	55
	         178,097 

	AHP-
	10
	16
	68
	6.991
	29
	209
	0.022
	14
	42
	         182,428 

	AHP-
	100
	22
	150
	8.040
	25
	149
	0.018
	18
	98
	         205,910 

	AHP-
	102
	21
	109
	7.653
	28
	192
	0.019
	19
	103
	         362,359 

	AHP-
	104
	19
	99
	7.408
	28
	192
	0.020
	17
	73
	         392,670 

	AHP-
	106
	21
	129
	7.567
	24
	116
	0.016
	17
	77
	         438,121 

	AHP-
	108
	20
	108
	8.078
	21
	129
	0.015
	17
	77
	         464,066 

	AHP-
	1000
	16
	80
	7.497
	19
	111
	0.014
	14
	54
	         468,883 

	AHP-
	1002
	21
	113
	7.513
	31
	223
	0.014
	18
	78
	         526,966 

	AHP-
	1004
	20
	136
	7.056
	23
	167
	0.029
	15
	79
	         539,691 

	AHP-
	1006
	17
	93
	7.495
	24
	172
	0.030
	17
	109
	         575,764 

	AHP-
	1008
	19
	95
	6.682
	31
	215
	0.024
	18
	90
	         593,118 

	AHP-
	1010
	18
	74
	6.953
	30
	230
	0.028
	17
	85
	         621,180 

	AHP-
	1012
	23
	131
	7.146
	28
	168
	0.031
	18
	70
	         626,634 

	AHP-
	1014
	23
	139
	8.069
	27
	179
	0.031
	19
	75
	         639,966 

	AHP-
	1016
	18
	126
	6.748
	23
	167
	0.030
	15
	79
	         646,605 

	AHP-
	1018
	17
	105
	6.939
	25
	197
	0.030
	15
	63
	         408,780 

	AHP-
	1020
	18
	106
	7.317
	25
	193
	1.803
	16
	96
	         284,467 

	AHP-
	1022
	19
	111
	7.697
	24
	156
	0.153
	14
	54
	         268,481 

	AHP-
	1024
	22
	138
	6.622
	30
	218
	0.148
	16
	76
	         253,849 

	AHP-
	1026
	14
	66
	7.252
	17
	113
	0.154
	14
	66
	         229,625 

	AHP-
	1028
	14
	86
	7.343
	20
	148
	0.157
	13
	81
	         222,084 

	AHP-
	1030
	21
	137
	7.776
	27
	167
	0.124
	16
	80
	         211,866 

	AHP-
	1032
	20
	108
	6.726
	27
	187
	0.106
	17
	93
	         214,853 

	AHP-
	1034
	19
	123
	7.132
	22
	138
	0.102
	15
	71
	         220,812 

	AHP-
	1036
	19
	107
	7.257
	26
	186
	0.093
	17
	81
	         206,786 

	AHP-
	1038
	18
	106
	7.927
	18
	106
	0.083
	13
	65
	         210,267 

	AHP-
	1040
	16
	96
	6.478
	22
	174
	0.078
	11
	39
	         217,464 

	AHP-
	1042
	22
	146
	7.263
	25
	173
	0.080
	19
	99
	         204,661 

	AHP-
	1044
	19
	107
	7.325
	23
	159
	0.096
	16
	92
	         196,889 

	AHP-
	1046
	19
	107
	7.739
	23
	147
	0.092
	15
	71
	         210,829 

	AHP-
	1048
	18
	94
	6.484
	20
	120
	0.096
	17
	89
	         201,351 

	AHP-
	1050
	23
	123
	7.325
	34
	230
	0.083
	19
	83
	         219,222 

	AHP-
	1052
	18
	110
	7.557
	26
	166
	0.080
	16
	84
	         241,366 

	AHP-
	1054
	17
	81
	7.226
	24
	164
	0.047
	16
	76
	         215,861 

	AHP-
	1056
	17
	93
	7.757
	28
	196
	0.813
	15
	67
	         228,621 

	AHP-
	1058
	18
	118
	6.991
	23
	155
	0.015
	15
	55
	         200,601 

	AHP-
	1060
	19
	151
	8.110
	21
	161
	0.019
	15
	83
	         252,009 

	AHP-
	1062
	19
	107
	7.268
	31
	247
	0.020
	16
	76
	         236,668 

	AHP-
	1064
	23
	131
	7.357
	29
	189
	0.017
	20
	84
	         237,049 

	AHP-
	1066
	18
	122
	7.055
	31
	235
	0.017
	15
	75
	         240,952 

	AHP-
	1068
	22
	134
	8.606
	21
	97
	0.017
	19
	99
	         272,891 

	AHP-
	1070
	18
	106
	7.707
	22
	158
	0.018
	16
	80
	         386,639 

	AHP-
	1072
	20
	112
	7.611
	23
	159
	0.019
	16
	72
	         313,911 

	AHP-
	1074
	22
	126
	8.236
	26
	194
	0.017
	18
	106
	         263,204 

	AHP-
	1076
	21
	121
	8.644
	28
	184
	0.020
	18
	74
	         264,143 

	AHP-
	1078
	21
	105
	7.690
	30
	222
	0.021
	18
	78
	         277,411 

	AHP-
	1080
	21
	145
	7.879
	21
	109
	0.016
	17
	93
	         289,429 

	AHP-
	1082
	21
	133
	8.109
	29
	233
	0.016
	16
	92
	         230,252 

	AHP-
	1084
	23
	119
	8.797
	31
	187
	0.014
	20
	104
	         263,490 

	AHP-
	1086
	20
	116
	7.367
	27
	195
	0.014
	17
	85
	         232,918 
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Q-Cost�
Time(ms)�
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Q-Cost�
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4�
hwb4�
24�
154�
0.577 �
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�
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�
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urf3�
3426�
538588�
12.595�
3334�
�
58,306�
�
11�
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10527�
1412439�
75.780�
10336�
�
384,589�
�
�Table 2. Comparison of numbers of gates and quantum costs of MMD and MP algorithms for reversible functions with various numbers of bits. This is “large circuits” variant with k=5000. No ancilla bits.
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