CHAPTER 10
Quantum Algorithms
10.1. Introduction. Classes of Oracles for Grover Algorithm

It is well-known that a quantum algorithm can be orders of magnitude more efficient than a standard algorithm. Unfortunately, there are very few algorithms in addition to the famous Shor [Shor94] and Grover [Grover96] algorithms that are known to be of any practical use outside pure mathematics. One has thus to consider how the known quantum algorithms can be used to solve practical problems. There is a large class of highly complex CAD problems that cannot be exactly solved on standard computers. But they could be solved if a classical Satisfiability or one of other similar Decision Functions were solvable. This can be done using Grover Algorithm.
This chapter will present quantum algorithms: Deutsch, Deutsch-Jozsa, Bernstein-Vazirani and their modifications and next the Grover algorithm. Next, in chapter 6 these ideas will be related to hierarchical parallel search system and in chapter 12 a discussion of parallel satisfiability oracles will follow and several such oracles will be constructed, including POS satisfiability, covering problems and ESOP minimization. These will be illustrated using CUDA simulations. Chapter 8 discusses oracles for graph coloring and chapter 9 the oracles for other constraint satisfaction problems. Path problems and oracles will be also discussed in the final version of the book. Finally, chapter 10 presents problems and oracles for spectral methods and machine learning and an overview of constraint satisfaction problems in robotics. Next chapters will illustrate several uses of Grover algorithm in robotics, in problems related to search, planning, language recognition, artificial neural nets and vision.
10.2. Quantum Algorithms
10.2.1. Introduction to Quantum Algorithms.
When we look into the laws of Nature, we can say that managing information and logic, hence computing can not exist in a detachment. That means information must be recorded/written on some physical substance such as paper, or magnetic media or neural connections in our brain, or a beam photons or electrons trapped in quantum dots. Here the physical law of these media determines the logic to store information, and to compute that information. Quantum mechanics governs the behavior and the properties of those media in a fundamental way on the microscopic scale of atoms and molecules. So, we can say that classical computers are following the rules of quantum mechanics. But the architectures of classical computers are not based on quantum mechanics. The information in computing, how the zero and the one bits evolve inside those machines can be explained by classical logic and information theory. However, quantum computers exploit the phenomena of superposition and entanglement which are fundamental issues in quantum mechanics [Nielsen00]. Thus quantum computers have additional features than their counterpart classical computers lack. Hence quantum computer are more powerful than the classical computers or in some problems at least similar. Observe that Quantum and Classical computer both in principle can emulate each other, but with very different efficiencies.

Now, we can ask ourselves why we need Quantum Computing? Is it for the sake of flourishing and very attractive research area [Hirvensalo01] or “mathematical wishful thinking” [Manin99]? “Quantum Computing” comprises theories, algorithms and techniques for exploiting the unique nature of quantum events to obtain computational advantages. Actually that is not the reason, the fact is that the quantum computer promises great future for computing: it significantly reduces the times of solving many computational tasks. It was shown by Peter Shor in 1994 that the problem of factoring a number into prime numbers could efficiently be solved on a quantum computer in polynomial time [Shor94], hence showing the advantage of Quantum computers in solving efficiently problems that are hard for classical computers. (Hard means that the time for solving the problem grows at least exponentially with the length of input data). Again, a classical simulation of quantum mechanic problems typically suffers from exponential slowdown, whereas quantum system could in principle execute the simulation of any other quantum system efficiently [Feynman96]. Apart from the computational power, Moore’s law has physical limits [Moore65]; then in year 2020 the components of computers will be on atomic scale where quantum effects are dominant. So, quantum computers will be one of the natural solutions for future computing. Moreover, we know from Landauer [Landauer61] that binary logic circuits built using irreversible gates lead inevitably to energy dissipation, regardless of the technology used to realize the gates. Zhirnov et al. [Zhirnov03] showed that power dissipation in any future CMOS will lead to impossible heat removal and thus the speeding-up of CMOS devices will be impossible at some point which will be reached soon. Bennett [Bennett73] proved that for power not to be dissipated in a binary logic circuit, it is necessary that the circuit be built from reversible gates. Thus all output patterns are just permutations of input patterns. Such circuit can be described by a permutation matrix. Bennett's theorem suggests that every future binary technology will have to use some kind of reversible gates in order to reduce power dissipation. Quantum technology is inherently reversible and is now the most promising technology for future computing systems [Nielsen00].  Even small building blocks of a quantum computer or small quantum circuits may be useful like in quantum cryptography [Gisin02], in atomic clock [Wineland94, Huelga97], in entanglement distillation [Bennett96, Horodecki01]. (In the atomic clock, a quantum circuit could in principal reduce the uncertainty of the clock by a factor 
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 by generating quantum correlations between N relevant atoms, which is very important in global positioning system and in synchronizing networks and distant telescope. Besides, application of small quantum circuits in many cases distills a few highly entangled states out of many weakly entangled ones in order to distribute entangled states over large distances. We have to send them through inevitably noisy channels, thereby loosing some of the entanglement.)

Moreover, Quantum Circuits (QC) have an advantage of being able to perform massively parallel computations in one time step [Hirvensalo01] which causes interest in them to perform in future massively parallel computations.

10.2.2. Background
This section contains preliminary background discussion of basic topics of binary quantum algorithms and Grover’s Algorithm.

As we have shown in chapters 2 – 4 the circuit model for the quantum computer [Nielsen00] is in principle very similar to the traditional circuit model. We know that a classical computer operates on a vector of input bits and returns a vector of output bits, hence the functions can be described as logical circuits built out of many elementary logic operations. Thereby, in quantum computers we have to replace the input-output function by a quantum operation mapping. In quantum computing bits are replaced by qubits in a complex multi-dimensional Hilbert space; these spaces and their tensor products constitute the objects of quantum algebra as well. 

10.2.3. Quantum Oracle.
An oracle is a logic circuit that answers “yes/no” to a question asked to it, for instance – “is this mapping of nodes to colors a correct graph coloring?” Quantum oracles are built from truly quantum gates and many oracles include arithmetic, logic, and mixed blocks. The oracle architecture is very suitable for quantum computers and basically, it is one of very few architectures investigated in this field. We know the probabilistic read-out nature of  a quantum system, thus if one only knows how to build a respective oracle, Grover algorithm and its modifications would be immediately useful to solve many problems when the physical quantum computers will become available. These algorithms are either deterministic or probabilistic in nature. It is therefore important to study methods and algorithms to build various types of oracles. The problem of building various classes of oracles or their blocks (components) is well known in case of binary quantum circuits [Nielsen00, Perkowski04]. The questions asked the oracles may be as elaborate as you can make them, the procedure that answers the questions may be lengthy and a lot of auxiliary data may get generated while the question is being answered. Yet all that comes out is just yes or no. However, an oracle is the portion of an algorithm which can be regarded as a “black box” whose behavior can be relied upon. Figure 10.2.3.1 illustrates the nature of quantum oracle, input to the synthesis is a black box for a function  f(x)  that verifies some property.                                   
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 Figure 10.2.3.1: Oracle for quantum algorithms.
This oracle architecture is very suitable for quantum computers, for simplification, even a single quantum gate can be treated in some problems as a black box, i.e. Quantum Oracle. We remember probabilistic nature of Quantum system measurement. This is an important research and experimentation problem. However, in this book   the challenges are to implement practical quantum computers and to design quantum circuits made of available quantum gates [Deutsch89]. 

The quantum algorithms that will be explained as an introduction to Grover algorithm are the following:
The Deutsch Algorithm 

This algorithm answers the following question. Suppose we have a function
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, which can be either constant or balanced. In this case the function is constant if   f (0) =   f (1) and it is balanced if 
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. Classically it would take two evaluations of the function to tell whether it is one or the other. Quantumly, we can answer this question in a single evaluation only. The reason for this is that quantumly we can pack 0 and 1 into x at the same time, of course. This fact was the first breakthrough in quantum computing thanks to David Deutsch.

The Deutsch-Jozsa Algorithm 

This algorithm generalizes the Deutsch algorithm to a function
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. We ask the same question: is the function is constant or balanced. Here balanced means that the function is 0 on half of its arguments and 1 on the other half. Of course in this case the function may be neither constant nor balanced. In this case the oracle doesn't work: it may say yes or no and the answer will be meaningless. Although deeper than Deutsch algorithm, this extension by Jozsa was still limited to particular uses.

The Bernstein-Vazirani  Algorithm
Suppose there is a function 
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 is a scalar product, x is vector of input variables, thus f(x) is a linear Boolean function always, for instance 
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. How many measurements are required to find the value of a? Classically one has to perform measurements for all possible arguments and then solve a system of linear equations for a. Quantumly a is delivered in one computational step on output lines of the oracle. This problem has limited but practical applications in logic synthesis and image processing. It is related to Walsh-Hadamard spectral transforms which find many applications.
The Simon Algorithm 

Suppose there is a function
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. The function is supposed to be 2-to-1, i.e., for every value of f  there are always two n-arguments such x1 and x2 that f (x1) = f (x2). The function is also supposed to be periodic, meaning that there is such a binary vector a that f (x
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 a) = f (x), where 
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 is a bitwise EXOR on words x1 and x2. The algorithm returns the period a in O(n) measurements. Of course, if one disposes a sufficiently large ensemble of quantum computers then a single computation will return the answer in the density operator, but so far, we are not discussing ensemble computers much in this book. This algorithm is historically very important as it started Shor to think about using periodicity which led ultimately to the discovery of the Shor algorithm.

10.2.3.1. The Deutsch Algorithm 

The circuit that implements the Deutsch Oracle is shown in Figure 10.2.3.1.1: 
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Figure 10.2.3.1.1: Deutsch Quantum Algorithm. M is the single-qubit measurement operator. f  is a one-argument Boolean function.
Here H is the Hadamard gate, which we have already encountered in Chapter 2:
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or in matrix notation: 
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In Figure 10.2.3.1.1 the block  Uf  denotes a controlled gate defined as follows, using Dirac notation: 
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Function f maps {0, 1} to {0, 1}. Symbol 
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 is the tensor product. Function of f can be either constant or balanced. As discussed at the beginning of this section, on a classical computer two measurements are required to figure out one if  function f is balanced or constant. 

The Hadamard gate in the upper qubit converts 
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 are simultaneously given to x. 

The detailed analysis of this circuit will follow: 

1. The first pair of Hadamard gates performs the following transformation:
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2. Now the controlled-Uf gate is applied to this quantum state. The Equation 10.2.3.1.1 is now derived: 
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                                     Equation 10.2.3.1.1

      Observe that when  f(x) = 0 then the Equation 10.2.3.1.2 holds.
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                Equation 10.2.3.1.2
      Similarly for  f(x) = 1 we have Equation 10.2.3.1.3. 
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                Equation 10.2.3.1.3
     It results from Equation 10.2.3.1.2 and Equation 10.2.3.1.3 that the same formula holds   for all values of f(x). This leads to Equation 10.2.3.1.4.

          
[image: image26.wmf])

1

0

(

)

1

(

)

1

0

(

)

(

-

Ä

-

=

-

Ä

x

x

U

x

f

f

                                 Equation 10.2.3.1.4
Applying equation to our state from step1 leads to Equation 10.2.3.1.5.
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                                  Equation 10.2.3.1.5
3.  Finally the Hadamard gate is applied to the first vector as in Equation 10.2.3.1.6.
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                                                        Equation 10.2.3.1.6
      Which leads to Equation 4.2.3.1.7.
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                                                                                              Equation 10.2.3.1.7

When f(x) is a constant function then (-1) f(0) - (-1) f(1) = 0 . This means that Equation 10.2.3.1.7 reduces to Equation 10.2.3.1.8 for the upper qubit.
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                                           Equation 10.2.3.1.8
When f(x) is balanced then (-1) f(0) + (-1) f(1) = 0 which reduces the upper qubit to Equation 10.2.3.1.9. 
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                                           Equation 10.2.3.1.9
Thus to find if function f(x) is constant or balanced we have to measure the upper qubit vector. If it is 
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then f(x) is a constant, if it is 
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then f(x) is a balanced function. 

One may wonder what happens to the bottom qubit and why the values such as (-1) f(x) mysteriously shifted to the upper qubit and have not stayed with the bottom qubit. The answer is that the bottom qubit is allowed to decohere (as a garbage qubit). As it does so, it collapses onto
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or 
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, thus forcing the parameters that describe the bipartite state onto the upper qubit. The Deutsch oracle is a very nice and simple demonstration of the essentials of quantum computing: first it shows the power of quantum parallelism, then it shows the importance of entanglement and non-locality in quantum computing. Every quantum computer demonstrates that the quantum states perceived as nonsensical by the Einstein-Podolsky-Rosen paradox truly exist, thus proving Einstein to be wrong [Einstein35, Bennett93] and demonstrating that true science has no authorities, only facts. 

Now we will explain the Deutsch Algorithm one more time using a simple transformation based method. The oracles for cases f (x) = 0, f (x) = 1, f (x) = x and f (x) = 
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 are shown in Figure 10.2.3.1.2.
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Figure 10.2.3.1.2: Four cases of the Deutsch oracle, function f(x)=0 and f(x)=1 are constants, function f(x)=x and f(x)=
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 are balanced.
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Figure 10.2.3.1.3: Oracle with input and output Hadamard gates for the case f(x) = 0.
Using quantum equivalence transformations from chapter 2 the left part of Figure 10.2.3.1.3 is transformed to the right part. As expected, the upper qubit is 
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before measurement so it will be 0 after the measurement. Thus for f(x)=0 a constant, the measured qubit is 0.  Similarly, analyzing case of f(x) = 1, Figure 10.2.3.1.4,  the quantum equivalence transformation produces the circuit from the right which gives 0 on the first qubit after measurement.
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Figure 10.2.3.1.4: Oracle with input and output Hadamards for the case f(x) = 1.
Using the quantum equivalence transformation the circuit (algorithm) for case f(x) = x, (Figure 10.2.3.1.5 left) is converted to the circuit from the right of Figure 10.2.3.1.5 thus giving value 1 in the measurement of the upper bit for balanced function f(x) = x.
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Figure 10.2.3.1.5: Oracle with input and output Hadamards  for the case f(x) = x.
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Figure 10.2.3.1.6: Oracle with input and output Hadamards for the case f(x) = 
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. (a) stages of transformation, (b) marked sub circuits subject to transformations in Figure 10.2.3.1.6a.
Transformation of the last case of the algorithm, when f(x) = 
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 is more tricky. The original circuit is given at the left in Figure 10.2.3.1.6. We can not apply any meaningful transform to simplify this circuit directly. But we can see that the upper and lower wires directly to the right of the Feynman gate can be replaced as a serial composition of the Hadamards each. This allows to apply the transform from Figure 10.2.3.1.5 to the left part of the circuit (in a rectangle). At the same time the transformation from Figure 10.2.3.1.4 is applied to the right part of the left circuit from Figure 10.2.3.1.6b thus leading to the right circuit from Figure 10.2.3.1.6b. Clearly, when we measure the upper qubit it will be a “1”. Thus, the measurement of the upper qubit is always 0 for constant functions and always 1 for balanced functions. The same result as derived analytically by Deutsch. The graphical method here shows also that the choice of a particular transformation rule, is non-trivial, as we have to make first a more complex circuit by adding two pair of Hadamards, in order to be able to simplify it later on by applying quantum equivalence transformations. we   hope that a general intelligent smart software based on such transformations will prove some interesting facts.
10.2.3.2. The Deutsch-Jozsa Algorithm 

Jozsa extended Deutsch ideas so his oracle is similar to the Deutsch oracle, but it has more bits: 
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Figure 10.2.3.2.1: Deutsch-Jozsa Quantum Algorithm with two inputs x1 and x2 as measurement of  f  .
The role of the Hadamard gates is the same as in Deutsch algorithm. However, the Uf gate is now controlled by n qubits (by two qubits  x1 and x2  in Figure 10.2.3.2.1). Function f maps from {0, 1}n to {0, 1}. As in Deutsch algorithm function f can be either constant or balanced. The task of the quantum circuit is to check whether Uf is a constant or a balanced function by performing just one measurement. A classical oracle would require 2n measurements, one for each value of the argument, to ascertain that f is constant. By knowing that the choice is only between constant and balanced functions the classical oracle would still need 2n-1 + 1 measurements (because by taking randomly 2n-1 measurements and having a 0 always we still would not know if the 2n-1 + 1 measurement will give a 0 or a 1. If it will give a zero, the function is a constant, otherwise the function is balanced).

The detailed analysis of the Deutsch-Jozsa algorithm will follow.

1.  As before, H gates are first applied, as in Equation 10.2.3.2.1  to n  states 
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                             Equation 10.2.3.2.1

Applying H to the bottom qubit gives
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. From which the state of the entire computer is described as in Equation 10.2.3.2.2: 
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                                                  Equation 10.2.3.2.2
2. Now the n-qubit controlled Uf operator (gate) is applied. By extending the approach from the previous section, we obtain Equation 10.2.3.2.3.


[image: image52.wmf])

1

0

(

2

1

)

1

(

2

1

1

2

0

)

(

2

/

-

Ä

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

-

å

-

=

n

x

x

f

n

x

                                      Equation 10.2.3.2.3

3. Finally the Hadamard transform is applied to the top n qubits again. But the top qubits are no longer just
[image: image53.wmf]0

. Observe that the basic definition of Hadamard transform can be represented in Equation 10.2.3.2.4 and Equation 10.2.3.2.5. 
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                 Equation 10.2.3.2.5

Combining together Equation 10.2.3.2.4 and Equation 10.2.3.2.5 we obtain Equation 10.2.3.2.6.
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                                                   Equation 10.2.3.2.6

The Hadamard transform from Equation 10.2.3.2.6 is now applied to the tensor product of n qubits, leading to Equation 10.2.3.2.7.
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   Equation 10.2.3.2.7

where
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. Observe that the addition is here arithmetic, not Boolean or modulo. The final expression from Equation 10.2.3.2.7 is now inserted into our formula.  This leads to Equation 10.2.3.2.8.
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      Equation 10.2.3.2.8

Several interesting properties can be now derived from the final formula. For instance,  if  f(x) is constant, it can be taken before the sum symbol. Therefore the sum becomes as in Equation 10.2.3.2.9. 
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                                                                            Equation 10.2.3.2.9
Now, the value of 
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 is fixed to analyze Equation 10.2.3.2.10.
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                                                                                 Equation 10.2.3.2.10

In case of y ≠ 0 we obtain Equation 10.2.3.2.11. 
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                                                                               Equation 10.2.3.2.11

This is because x • y will ``push as often to the right as to the left''. So the only term that is going to survive in this case is for y = 
[image: image64.wmf]y

. Therefore the final state of the oracle is in this case as in Equation 10.2.3.2.12.
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In the second case, when  f(x) is balanced then  
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 leads to Equation 10.2.3.2.13.
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                                    Equation 10.2.3.2.13
Observe that f(x) pushes as often to the right as it pushes to the left, because f is balanced. Therefore the probability amplitude of finding 
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in 
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is zero. 

Concluding these cases if function f(x) is constant then measuring the output control qubits must return 
[image: image70.wmf]0

 on every qubit x1, …, xn. If this is not the case then function f(x) must be balanced. 

Now we will use the graphical method introduced already at the end of the previous section to explain the Deusch-Jozsa  algorithm for Uf controlled by 2 qubits (Figure 10.2.3.2.2).  This figure shows only one case, other can be done similarly. In this case outputs in x1, x2 are not 0, so function is balanced.
Observe that with the graphical method we can only check quickly many cases of balanced functions that we cannot make a general proof. Our method still remains useful as it allows for fast testing if some property of a quantum algorithm is true.
[image: image71.emf]
                    (a)                                                             (b)                                      (c)

Figure 10.2.3.2.2: Graphical method applied to an instance of Deutsch-Jozsa algorithm (a) Original circuit with balance function 
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, (b) adding two Hadamards in series to allow double applications of transformation from Figure 10.2.3.1.5, (c) The final circuit.
Although the algebraic proof is more general, the graphical method developed by us    is more intuitive, especially for the digital design engineers, who are familiar with graphical transformations of logic schemata.
10.2.3.3. The Bernstein-Vazirani Algorithm
The Bernstein-Vazirani Oracle is the Deutsch Jozsa oracle with f(x) = a • x, where the multiplication is arithmetical. The final state of the oracle is described by Equation 10.2.3.3.1.
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                                     Equation 10.2.3.3.1

Using the same method as in previous sections we write the formula for the sum over x, as given in Equation 10.2.3.3.2.
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                                                                  Equation 10.2.3.3.2

In case when a ≠ y  this leads to value 0, because the components of the sum will push as much to the right as they will push to the left. In case when a = y the Equation 10.2.3.3.3 is obtained. 
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                                                                       Equation 10.2.3.3.3

From Equation 10.2.3.3.3 we derive the formula for the final quantum state, as given in Equation 10.2.3.3.4.
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                      Equation 10.2.3.3.4

Therefore the value of a is returned by measuring the control qubits.

10.2.3.4. The Simon Algorithm
An example of a Simon algorithm for a function 
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 is shown Figure

10.2.3.4.1. 
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Figure 10.2.3.4.1: The Simon Algorithm. 


In general the oracle comprises n qubits at the top, which look the same as the top qubits in oracles from previous sections of this chapter. Then we have n qubits at the bottom. Each of these n qubits corresponds to a sub-function
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, n of which make up function f. 

The boxes labelled Ufk are the controlled-NOT gates, where the control is provided by fk(x). 

In summary, the Simon Algorithm tests a function 
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 which in Figure 10.2.3.4.1 was decomposed into n scalar-valued functions
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The  oracle function in Simon Algorithm must satisfy the following conditions: 

1. f is 2-to-1, i.e., for every value of f there are always two different vectors x1 and x2 such that f(x1) = f(x2) 

2.  f is periodic, i.e., there exists such vector a that f(x 
[image: image82.wmf]Å

 a) = f(x)

Of course, the following question may be asked: if f is periodic then it should be more than just 2-to-1, because 

f(x
[image: image83.wmf]Å

a 
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 a) = f(x
[image: image85.wmf]Å

0) = f(x) 

But remember that here we work within binary arithmetic and 
[image: image86.wmf]Å

 is a modulo-2 addition (or EXOR), hence for every vector a we have a 
[image: image87.wmf]Å

 a = 0 and therefore x 
[image: image88.wmf]Å

a
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 a takes us back to x. 

Assuming that function f(x) satisfies these conditions, the oracle presents its period a in O(n) measurements. 

This is a considerable improvement on a classical system designed to do the same. To find the value of a the classical oracle would have to be queried an exponential number of times in n . 

The detailed analysis of the Simon Algorithm follows:

Step 1.  Applying the Hadamard transform to the top n qubits works the same as in the Deutsch-Jozsa algorithm. We thus reuse the result obtained in step 1 of the analysis of the Deutsch-Jozsa circuit. Thus we have Equation 10.2.3.4.1.
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         Equation  10.2.3.4.1

Step 2. The application of the Ufk gates at this stage converts the n bottom qubits that carry
[image: image91.wmf]0

 into 
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. Observe in the circuit that for every individual 
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qubit, if its corresponding fk(x) evaluates to 1 then the qubit is flipped to 
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 , if fk(x) evaluates to 0, the qubit stays  at
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. Consequently the qubit simply becomes 
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(

x

f

k

. Concluding these calculations, the final equation is Equation 10.2.3.4.2.
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                                Equation 10.2.3.4.2

Step 3. Now allow the bottom n qubits to decohere and this yields some value, which corresponds either to f(x0) or to f(x0
[image: image98.wmf]Å

a). So this sets the top n qubits into a superposition of these two vectors and the state of the computer becomes as in Equation 10.2.3.4.3.
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                                                Equation 10.2.3.4.3

Observe that the Einstein-Podolsky-Rosen paradox was observed here again, the fundament of all quantum computing.

Step 4.  Applying the Hadamard transform to the top n qubits results now in Equation 10.2.3.4.4. 
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      Equation 10.2.3.4.4
All vectors y are derived now to two classes. For first class y • a = 1.  For the second class we have  y • a = 0. For the first class the Equation 10.2.3.4.5 is obtained: 
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 for every coefficient.                    Equation 10.2.3.4.5

Therefore the only vectors y that are going to survive this are the vectors perpendicular to vector a. The sum evaluates therefore to Equation 10.2.3.4.6. 
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              Equation 10.2.3.4.6

Measuring the top n qubits  returns now always a vector y which is perpendicular to a. But it can be any vector from the superposition generated by the corresponding measurement on the bottom n qubits. However, if we perform the measurement a sufficient number of times to obtain n different vectors yk, then we get the set of n independent equations, as in Equation 10.2.3.4.7 below:
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                                                                                       Equation 10.2.3.4.7

The Equation 10.2.3.4.7 can be solved classically for the vector a. 

10.3. Grover’s Algorithm 

10. 3.1. Initial Presentations.

In this section the Grover algorithm will be presented in full detail. It is not only a theory, as we know the Grover’s algorithm has been successfully realized in NMR [Chuang98], optical system [Kwiat99] and in cavity QED system [Scully01]. However, all these implementations are restricted to case N = 4 for which only one state is required to recover the target state with probability 1. Besides, an extension for greater values of N would be complicated [Ahn00]. We have however simulated Grover for higher values of N using QuiddPro and Matlab. 
Let a system have unordered states that are labeled
[image: image104.wmf]12
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. Let n be such that 2n ≥ N. Let there be an unique state, say 
[image: image105.wmf]m
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 , that satisfies the condition
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, whereas for all other states S, 
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 ( assume that for any state S, the condition C(S) can be evaluated in unit time). The problem is to identify the state
[image: image108.wmf]m

S

.  Formulated as this, the Grover’s problem is called an “unstructured database search” which name was observed by several authors to be confusing. For an unstructured database, there does not exist any sorting that would aid to select the solution state. The basic idea behind the Grover’s algorithm is that one wants to start off with a superposition of all possible database elements. The encoding space for these elements would only be (log2N) qubits but more importantly a quantum register (or a group of qubits) would be able to hold all possibilities at the same time. This would mean that any operation on the memory would act on all possible elements of the database, in unit time. This is indeed astonishing. The core of the algorithm then revolves around changing the amplitudes vectors (amplitude dictates the probability of each state being observed upon measurement) of the superposed states such that the amplitude vectors of the solutions get magnified at the expense of non solutions. The database metaphor here is not good for intuitions of an engineer. Let us better assume that we can construct some device, the oracle to tell us if 
[image: image109.wmf]m
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 solves the search problem. This device is called historically the Oracle, a logical mechanism device with the ability to recognize solutions to the search problem. Grover implemented this concept using a combination of two transformations performed iteratively for an optimal number of iterations. These are the “selective phase inversion” operation and the “inversion about the mean” operation.  Selective inversion of the marked state, followed by the inversion about the mean is also referred to as the Grover Operator, called also the “Grover Loop” and denoted by G. The Grover Operator has the effect of increasing the amplitude of the marked state by
[image: image110.wmf](1)
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. Therefore, after 
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 operations, the probability of measuring the marked state approaches the value of “1” [Nielsen00, Grover96]. 
The definition of the diffusion matrix D: Dii = 2/N and Dij = - 1 + 2/N if we   ≠ j is an inversion of about the average operator. The matrix representations of all operators used are unitary to preserve the normalization constraint. Assume N = 2n for n input qubits, for simplification.
Here is how the Grover algorithm works; just to explain main idea and in a big simplification.
Step 1. Initialize the quantum memory register to state 
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Step 2. Initialize the system to the superposition:                              
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   for each N states
      i.e. there is the same amplitude 
[image: image114.wmf]N

1

 to be in each of the N states of qubits..

Step 3. Repeat the following unitary operations
[image: image115.wmf]()
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times.

              (a) Let the system be in any state S : change the amplitude aj to - aj  for 
[image: image116.wmf]m

S

 such that 
[image: image117.wmf]()1

m
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=

, for all other states, leave the amplitude unaltered.

              (b) Apply inversion about the average to increase amplitude of S with 
[image: image118.wmf]()1
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=

. This transformation can be implemented by the diffusion matrix (or diffusion operator) D given above.

Step 4. Measure the first register state which should give us the state Sn where  Sn  is in { 0,…..2n – 1}. Check C (Sn). This will be the state 
[image: image119.wmf]m

S

(i.e. the desired state that satisfies the condition 
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 with a probability of at least ½ ).

Step 5. If  
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 does not satisfy 
[image: image122.wmf]()1
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, then go to 1. This would be in case the algorithm fails to measure the correct marked state. This is a low probability event, which is however possible.

As we know, placing the register in an equal superposition of all states can be accomplished by applying the Walsh-Hadamard operator [Hayward02]. Using Hilbert space notions, the selective inversion of the marked state in the Grover Operator means if the system is in any state 
[image: image123.wmf]S

 and
[image: image124.wmf]()1
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=

, we rotate the phase by 
[image: image125.wmf]p

 radians, otherwise we leave the system unaltered. This operation can be accomplished with the Oracle as described in [Abe]. This is also a very natural generalization of the methods from previous sections. In section 10.3.6 we give brief mathematical overview of Grover Algorithm [Chen02] and its quantum properties. We will use the binary string basis in increasing lexicographic order as in Equation 10.3.1.1.
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                                         Equation 10.3.1.1

for the 2n dimensional Hilbert space H. In the Figure 10.3.1.1, we utilize the important and elegant results by Barenco et al.[Barenco95] for quantum network representation.
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Figure 10.3.1.1: Controlled Quantum gates, the top wire always represents  the most significant qubit.

Let 
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be a database oracle which is encoded in an n-qubit quantum computers as 
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 with H = span
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 is the unknown search target in 
[image: image132.wmf]D

ˆ

.  Now, the information through this black box Oracle function is the following 
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Here, we can represent 
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 as following for the mathematical simplicity and explanation, Equation 10.3.1.2.
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                                            Equation 10.3.1.2        

We can write also the Equation 10.3.1.3.


[image: image136.wmf]11

11

)

(

)

(

)

(

0

2

1

L

L

k

i

x

i

x

i

x

w

s

s

s

=

,                                                        Equation 10.3.1.3

in which 
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,                                                            Equation 10.3.1.4
Equation 10.3.1.4 is for Pauli-X rotation  matrix ( NOT-gate) acting on the j-th qubit. So, aj = 0 for j = i1,i2, ….ik. and for all other aj ‘s are 1. 

Initially we create 
[image: image138.wmf]å

-

=

=

1

0

1

N

i

i

w

N

s

, the uniform superposition of all basis states in Hilbert space H . Now the calculation of matrix 
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can be obtained as in Equation 10.3.1.5:
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                      Equation 10.3.1.5  
Here, both 
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and Is  are unitary operators. The Grover’s unitary operator in the iterative search for
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 and we apply Grover operator G, k times, we obtain operator
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 with probability close to 1. 

10.3.2. Some Insight about Grover ideas: the “Phase Kick-back”.
We verified using Matlab and QuiddPro the quantum computational model implemented by the Deutsch-Jozsa Algorithm and the Grover’s Algorithm. So we verified our hypothesis how to build the Quantum Oracle for Grover using Quantum Circuits. This is our fundamental idea, from which we can construct all new algorithm for quantum CAD. We call them algorithms but they all use Grover.

From observation, we found that if we do some nice transformation in the input and output state of a Quantum circuit, we can convert the quantum information which is hidden in the phase to the amplitude of the qubit. Here we introduce analysis procedure from input to outputs with Walsh-Hadamard Transform in the input and possible combination of different transforms in the output and keeping our Quantum Oracle in between. By calculating phase in spectral domain we get information which tells us the global issues of the quantum circuit. Besides, we investigated examples of spectral transforms which helped us to explain the general method to create new spectral transforms. The important concept to help understand intuitively the Grover algorithm and similar algorithms is called the “phase kick-back”.
Example 10.3.2.1:

This example explains intuitively the concept of “phase kick-back”.

As from the Figure 10.3.2.1 we have input vector
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. After Hadamards or other truly quantum gates, in general, the values are complex numbers, and we operate in Hilbert space. This is the hidden information in the quantum state (lost in measurement). As the state vector goes left to right (in quantum evolution or its simulation), each of the complex numbers in vector coordinates  will change to another complex number. These vectors can be visualized to help understand the quantum evolution of the circuit. Here we try to develop the kind of an intuition: we have the vector of complex numbers which permanently changes but it preserves all the quantum state vector properties as all the matrices are unitary. If we measure the vector, the sum of squares (sum of probabilities) is equal to one. Hidden information from phase is lost in the measurement, so the information must move by certain transformation from phase to magnitude.
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Figure 10.3.2.1: Oracle for function f together with input Hadamards.
Input state to oracle f: 

((00( + (01( + (10( + (11()((0( – (1()

Output state of the oracle:
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. This is shown in Figure 10.3.2.2.
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Figure 10.3.2.2: Calculation of the quantum state after oracle. Information is hidden in phase. The Hadamards on data qubits located after oracle transform the phase information to magnitude information.
The state of the inputs 
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 of the oracle that has a output result of 1 is ‘tagged’ with a negative phase “-1”. After Hadamard the solution is “known” in Hilbert space by having value -1. But it is hidded from us. If we observe (i.e. measure) it, we loose it.

The state ψij in Hilbert space after oracle may be thus one of the following:
(ψ00( = –  (00( + (01( + (10( + (11(  if  item (00( is data-base is “marked”.
(ψ01( = +  (00( – (01( + (10( + (11(  if item  (01( is data-base is “marked”.
(ψ10( = +  (00( + (01( – (10( + (11(  if item  (10( is data-base is “marked”.
(ψ11( = +  (00( + (01( + (10( – (11(  if item  (11( is data-base is “marked”.
Measuring many times will not help as the magnitudes are equal and phases are lost. We need some trick to convert the phase information to one that can be measured. And here comes the great discovery of Deutsch ( and Grover) – the Hadamard gates at the output of oracle help (see Figure 10.3.2.2). If we can even slightly change the magnitude we can learn probabilistically the marked states. This is done in Grover loop.
Classically we would need three measurements for two qubits oracles with one minterm marked. But here we need to build extremely complicated quantum circuit after the oracle to convert to magnitude, and next repeat measure and verify using a standard computer until the correct solution is found. Generally in Grover, we see that we have to repeat the Grover Loop O
[image: image152.wmf]N

 times. Now the question is, is this approach  practical? Certainly for Database problem it is not practical as the inverted database can be created more efficiently. The reasoning is that if we can build efficient oracle of certain width then basically the length of the oracle is less important, assuming that we have some ways to keep the  decoherence fixed. In chapters 8 and following we   will show problems for which Grover is practical (in future).
We know from Computer Science that every NP hard problem can be reduced in polynomial time to the Satisfiability Problem. SAT is exponential, however in Grover we are improving from N to 
[image: image153.wmf]N

, the gain is tremendous, change the exponent to root of exponent is a big gain. Grover is the most practical quantum algorithm as all Artificial Inteligence problem like satisfiability, graph coloring, Boolean mimization can in principle be reduced to Grover. Grover  is a hardware accelerator for any kind of search. In cases that we have backtracking or heuristic strategies, we can further improve our Grover accelerator.
10.3.3. More Ideas on using and Improving the Grover’s Algorithm for Quantum combinatorial Problems.
Quantum algorithms benefit from the superposition principle applied to the internal states of the quantum computer which are considered to be states of a (finite dimensional) Hilbert space. For instance, while classical algorithm needs N steps to search an unstructured database, a quantum Grover algorithm [Grover96] needs only O((N) steps and it can be proved that there is no classical algorithm that would require less steps than O(N) [Zalka99, Boyer96]. Although only few quantum algorithms are now known, many problems can be reduced to some of these algorithms, for instance to Quantum Fast Fourier Transform or to Grover Algorithm. But from this point of view Grover is much better than Shor Algorithm. Thus, any NP-hard problem can be reduced to Grover to give a practically useful and substantial reduction for large values of N, although not as high as in the case of exponential speedup obtained by the famous Shor quantum algorithm [Nielsen00] for integers factorization. The question is: “can we improve Grover Search?”

Simplifying, an oracle is a logic circuit that answers “yes/no” to a question  asked to it. Quantum oracle is build from quantum gates to allow superposition and entanglement of its outputs. Remember, that inputs to the oracle are also repeated as some of its outputs and they encode the solution using the “phase kick-back” [Nielsen00]. Without going yet to full details how an oracle works in a quantum algorithm, let us observe here only that the oracle must be built from truly quantum gates and that many oracles include arithmetic, logic, and mixed blocks.  If one only knows how to build a respective oracle, Grover algorithm and its modifications would be immediately useful to solve many problems when the physical quantum computers will become available. It is therefore important to study methods and algorithms to build various types of oracles (next chapters). The problem of building various classes of oracles or their blocks (components) is well known in case of binary quantum circuits (see [Nielsen00] and recent review about automatic synthesis in [Perkowski04]). Many papers how to synthesize them from binary quantum gates, or proposing general-purpose logic synthesis algorithms for binary quantum circuits have been recently published, which can be used together with the methods derived in Chapters 8 – 15 of this book.

We know that orthogonal transformations can be used to transform a Boolean function into its unique representation in the spectral domain. Many such transforms are surveyed by Hurst et. al. [Hurst85]. In particular, the Hadamard transform is susceptible for computing purposes. Each coefficient of Hadamard transform gives some global information about the function. The indices of a coefficient represent which input variables the coefficient correlates. In the general case, for a given F, there is one zeroth order coefficient. This term reflects the correlation of F to a constant value. The orders of coefficients increase upto nth order. The higher order coefficients correlate to the exclusive or of all the input variables specified in the coefficient index. Manipulations between spectral and Boolean domains are easy since forward and inverse operations involve applications of the same transform. Walsh-Hadamard transform bases are waves and the Walsh coefficients correspond to “chess patterns” in KMaps. They are thus used in communication, encryption, image processing and logic synthesis.
These properties of Hadamard Transform are used in Deutch, Deutch-Jozsa, Berstein-Vazirani and Simon algorithms. They should be also used in Grover-based problem solving, but this subject is absent from literature.

Concluding, the Grover algorithm in combinatorial optimization and decision problem applications can be improved by:

1) Using special cases and related heuristics.

2) Using parallelism on the level of quantum process, i.e., many quantum computers working in parallel (as in ensemble quantum computing, or in other parallel computing).

3) Using spectral transforms in synthesis, i.e., the Quantum Fast Fourier Transform. Hadamard Transform, Reed-Muller Transform, etc.
4) Using parallel quantum accelerators working with standard computers that control, verify and interpret data from quantum computers.

5) Reconfiguring quantum hardware dynamically.
6) Using phase kick-back and similar tricks.

Although Grover can not be improved as a general search algorithm, it can be improved for particular problem instances.
10.3.4. Calculations and Experimental Results.

We calculated (simulated) several circuits. We calculated the Deutsch algorithm and also Grover algorithm by using QuiDDPro Simulator. We build the Oracle in QuDDPro and also showed the visualization of quantum evolution of quantum circuits.  Every quantum algorithm is basically Oracle plus spectral transform on subsets of inputs and outputs. We illustrated in simulations the trick of putting the information in phase and the quantum parallelism. We found experimentally that inputs to the oracle, repeated as some of its outputs, encode the solution using the so-called “phase kick-back” [Brassard97]. Every NP complete problem can be reduced to Satisfiability, Graph Coloring or similar problem. Thus our simulation results confirm the validity of our  novel method to build a “general purpose” Quantum CAD design system (chapters 8 – 15).

In several architectures, we use Grover Algorithm to evaluate the condition that number of ones in the co-domain of certain mapping is less than certain user-selected threshold value (graph coloring – chapter 9). 
A block diagram of our simulated version of quantum circuit of Grover Algorithm is shown in Figure 10.3.4.1. 
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Figure 10.3.4.1: Grover Algorithm Block Diagram.
Circuit design is described in chapters 7, 8, 9. Blocks are presented in chapter 9. Oracles are in chapters 9 and subsequent. Inversion about the mean will be discussed in full detail in the remaining of this chapter. The discussion of more detailed physical aspects of the implementation of Grover algorithm is beyond the scope of this book. 
10.3.5. The Detailed Layout of the Grover Algorithm.

[image: image155.wmf]
Figure 10.3.10.1: The Grover Algorithm block diagram. Here, the G’s in the boxes represent Grover operators as in Figure 10.3.4.1.

The Hadamard gates that act upon all inputs make every element in the state vector equal. This state vector is represented as state
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 in Figure 10.3.10.1. The mathematical expression of 
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( the initial state) is shown in Figure 10.3.10.2.  
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Figure 10.3.10.2: the mathematical representation of initial state 
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, first register(see Figure 10.3.10.1). 

The second input register is a bit 1, and serves to make the G-iteration work. After going through a Hadamard gate, it assumes the output state of the Hadamard gate (see Figure 10.3.6.1), and is denoted by state 
[image: image160.wmf]-

. The inputs go through a number of G-iterations, after which the state vector will become the solution state.
10.3.6. The G-iteration.

Grover’s Algorithm transforms the basic state
[image: image161.wmf]j

, where the probabilities of measuring  each state are equal, into a state that has an overwhelming probability of measuring the solution. This transformation is achieved through G-iterations, illustrated in Figure 10.3.6.1. 
                                    Inverse by the mean circuit
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Figure 10.3.6.1: The first G-iteration

The G-iteration is composed of the Oracle Uf and the “inverse by the mean” function 
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. Grover’s Algorithm is meant to significantly increase the amplitude of the desired element. In order to be able to transform the element state’s amplitude, we need a function that will specifically act on it, which will be the basis of all later transformations of the element. This is f(i), which is illustrated in Figure 10.3.6.2.

[image: image164.png]1if i is the searched element (io)
j0) N
0 otherwise.




Figure 10.3.6.2: Function  f(i)

Uf is an oracle that is based on the function f(i). Uf is designed to conduct a phase shift on the desired element, i0, which corresponds to it gaining a negative phase in the state vector. This does not affect the other inputs at all; as probability amplitudes are squared, negative amplitude makes no difference. The function of Uf is illustrated in Figure 10.3.6.3.
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Figure 10.3.6.3: Function Uf.

This Uf marks the i0 with a minus sign, but the amplitude is yet to be increased. The state vector after Uf matrix can be considered 
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,  i0 is increased by the second part of the G-iteration the “inverse by the mean” circuit described by the unitary matrix 
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 cannot easily be explained in terms that are not geometric (Figure 10.3.6.4). 
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Figure 10.3.6.4: Geometric representation of G-iteration.
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 is the operator that occurs between φ1 and φG. It flips the state over the initial state
[image: image171.wmf]j

 . This increases the amplitude of i0. 
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 when applied to any state, brings up the initial state
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. The operators Uf and 
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 combine to increase the amplitude of the desired state i0 by an arbitrary amount theta, which is smaller when the Grover’s “database”  is larger (thus requiring more G-iterations).

It is important to note that Grover Algorithm is usually discussed as a “stand-alone” quantum algorithm executed on a single quantum computer. However, a more interesting approach is to consider a parallel system of computers, each of them being a classical computer with its reconfigurable quantum accelerator processor that can be dynamically reprogrammed and thus adapt to any given particular problem. This approach will be presented in chapter 6. In chapters 8, 9, and next, we will discuss various applications of Grover for which we constructed oracles. We will present also parallel quantum algorithms and their simulation using CUDA.
10.3. The Matlab Simulations.
10.4.1. The need for a simulation

We need to prove that our Oracle complies with Grover’s Algorithm. If it did not, then we would have to find an entirely different model for our algorithm, as our existing one would be faulty. The simulations were useful exercises as we often found several errors in our design and text files. We used QuiDDPro and MATLAB simulators to explore and verify our ideas of designing Grover Oracle for various problems and their versions discussed in chapters 8 and next.
10.4.2. The method of simulation

We used the MATLAB program to simulate the circuit, as we have no quantum computers to do so. MATLAB uses matrices, so we would have to derive the operation matrix of our algorithm, and the test it on the initial state vector (see Figure 10.4.2.2). We used a simplified graph (Figure 10.4.2.1), and a simplified version of the Oracle, consisting only of the Graphic rule checker (Figure 10.4.2.2). The entire final circuit of the oracle is shown in Figure 10.4.2.3. 
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Figure 10.4.2.1: The graph with 3 nodes for coloring to be simulated.
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Figure 10.4.2.2: The Grover Loop for graph coloring of the simple map (planar graph) from Figure 10.4.2.1. (a) Gives the complete “Grover Loop” circuit, denoted by G. (b)This circuit should be iterated 
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We find the matrix of this Oracle below. By creating the matrices of U1, U2, etc., we can find the total matrix of the comparator, which is denoted as Mcomp here. Our initial naïve design of the oracle is shown in Figure 10.4.2.3a. Next we improved the design to the circuit from Figure 10.4.2.3b and finally we got the idea of the circuit from Figure 10.4.2.4b. This circuit was so simple and beautiful that it actually made us    think about the role of CNOT gate which ultimately led to the introduction of Affine gates.
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(b)
Figure 10.4.2.3: The Graph Coloring checking oracle for the graph from Figure 10.4.2.1. (a) the circuit created directly from problem definition and without any optimization, (b)the next variant of the circuit uses mirrors for a
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c and is more expensive than the circuit from Figure 10.4.2.1a. 

This circuit concept leads however to the circuit with one less ancilla bit (Figure 10.4.2.4) which simplifies much the Matlab simulation.
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Figure 10.4.2.4: Calculations of the Unitary (permutative) matrices from the oracle. (a) The calculations of the matrices, (b) the complete oracle circuit with partitioning to matrices from Figure 10.4.2.4a.

The HZH is the Zero Shift subcircuit in the Grover’s Algorithm (Figure 10.4.2.2). The circuit analyzed in Figure 10.4.2.5 circuit is composed of basic gates. These gates have respective matrices. “H” is the matrix of a Hadamard, “Minv” an inverter, “wire” a wire, and “Toffoli 3” a 3-input Toffoli gate. Using Kronecker multiplication, we can find the matrices of each column. The columns of HZH are denoted as HN, where N is a number. N starts from the rightmost column, and increases as you go to the left. These column-matrices are multiplied together to create the total matrix of the circuit. This is done below. Mh is the initial Hadamard transform of the circuit, and U is the matrix of the Oracle. Vinit is the initial input vector.
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Figure 10.4.2.5: Analysis of the single iteration of Grover Loop.

MATLAB calculated all these results plus the entire Unitary matrix of the Grover Algorithm for this case. The results were consistent with what would happen if truly quantum Grover’s Algorithm was applied to the problem. Thus, we prove that our Oracle can work with the truly quantum Grover’s Algorithm to solve a very simple graph coloring problem.

10.5. Conclusion

The oracle design for Grover Algorithm has been successful in creating an Oracle for graph coloring, as verified by several MATLAB simulations. The concepts presented in this book should be learned by the reader alongside the creation of their own problems and solving them using simulators. Important concepts such as logic synthesis and simulation were necessary for the oracle design theory, and their usage will solidify the readers knowledge of them. This oracle design was our first example in this book of an application of quantum computing, and so proved invaluable to the explanation of all presented concepts. Good understanding of quantum circuit building principles leads also to the invention of new gates and oracles, as well as new quantum blocks. For instance the circuit from Figure 10.4.2.4 leads to the idea of affine Toffoli gates. The powerful idea that influenced this book comes from Raymon Lullus (XIII century) who influenced Descartes who influenced in turn George Boole. Boole said “every logic problem can be formulated as a logic equation”. We call them now the “Boolean Equations” to honor George Boole and the name of Raymon Lullus is unfortunately forgotten.
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So, the total matrix for one iteration is: 


(HZH * U * Mh)Vinit





The total matrix HZH is equal to:


 H1 * H2 * H3 * H2 * H1
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(U4 is identical to U2, U5 is identical to U1)


The total U matrix of the Oracle is 


 U=U5 * U4 * U3 * U2 * U1 
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