CHAPTER 11
TREE SEARCH, PARALLEL SEARCH AND QUANTUM PARALLEL SEARCH

Marek Perkowski, Sazzad Hossain
6.1. Introduction. The essence of parallel quantum search.
This chapter contains a description of our new approach to problem-solving and learning. The method presented in this chapter is an improved search method that applies both to classical and quantum search.
There are several approaches to find solutions in combinational problems. One group of approaches are based on tree searching. Algorithms such as depth-first-search, breadth-first-search, tabu search or A* search are used. Another approach uses Genetic Programming or Genetic Algorithm. Yet another approach uses Simulated Annealing. Learning can be incorporated in one way or another into any of these algorithms.
Here we will show a new approach where several algorithms are combined together and that is specialized for minimization of multi-level, binary and multiple-valued logic networks from various types of gates, in particular in AND/EXOR, Galois and Linearly Independent Logic.
Search can be realized on a serial (one-processor computer) and on a parallel computer. Parallelism gives of course the increase of the processing power thanks to many processors working in parallel that can be used to decrease the processing time. There is however also another advantage of parallelism. It is that the processors can use different algorithms and thus one of them can find some coefficients or bounds that can be next used by all processors as the bound constraining their search thus improving the total processing time to find the solution. Also, using FPGAs or other reconfigurable system allows to use the learned problem characteristics to modify the structure of the computing systems or/and its processing units. All these ideas can be applied to the quantum search as well as to the standard search.
We can characterize a general parallel quantum search method as having the following properties:

1. The general search method uses “unit processors” to perform “canonical searches”.
2. Each canonical search uses certain strategy, this strategy is quantum or not. Each canonical search searches certain subspace of the entire problem space.
3. Each canonical search searches certain tree in a complete or incomplete search manner. Its work can be stopped by other processor to load a new search problem to its processor or the search parameters can be updated.
4. There are three types of parallelism related to quantum computing:
1) The quantum algorithm as introduced in Chapter 5 of this book. We will call it the “standard quantum computer”. This computer has quantum parallelism as represented in Grover algorithm. This parallelism is based on superposition and entanglement and was fully explained in chapter 5.

2) In contrast to “standard quantum computer” the quantum computer can be “ensemble quantum computer.” In ensemble quantum computer many standard quantum computers work in parallel as one unit, performing exactly the same algorithm. Observe that if a standard quantum computer is for instance in state V0 then, when measured, it gives probabilistically 0 or 1 with probability 1/2 each. We thus do not know if the computer was in state 0 or V0. Quantum Ensemble computer however works differently. Let us assume that 10,000 standard quantum computers in this ensemble computer are in state V0, then during the measurement statistically 5,000 computers will read 0 and another 5,000 computers will read 1. Thus we statistically know that the state of each computer was on a big circle (Equator) of the Bloch sphere. We have thus more information than in the case of a standard quantum computer and we can distinguish state 0, 1 and V0 in this single (ensemble) measurement.

3) Finally, there can be a set of standard quantum computers or a set of ensemble quantum computers that work in parallel. This is similar to a parallel computing system of normal computers, and various structure and network types of parallel computers can be used. This is the most general model of computing of this book.

[image: image1.emf]Hardware re-

programming of slave

processor structures

and parameters

Hardware

programming of slave

processor structures

Slave

quantum

processor

Synthesis and

decomposition of the

problem

Dynamic

“Master”

processor

Slave

quantum

processor

Slave

quantum

processor

Slave

quantum

processor

….

….

. .

results

Main Classical Processor

Problem

Specification

Quantum Computer

Decomposed

task

Partial

answers

loading

loading

Dynamic

allocation and

scheduling

Static synthesis, decomposition, allocation

and hardware programming

Figure 6.1.1: Hierarchical control Figure.

The entire search can be thus decomposed to many quantum and standard computers. When we talk in this book about a search tree, one has to understand that various parts of this tree can be expanded separately in various processors and by various algorithms and computational mechanisms 1), 2), 3) as above. The schematic diagram of a parallel quantum computer is presented in Figure 6.1.1.
6.2. Advanced Search Method

6.2.1. Introduction to Advanced Search Methods

One of the most important components to create successful programs for many CAD applications is developing a good search strategy that is based on the particular problem to be solved and its problem-specific heuristics.

In principle, better search methods either use some kind of heuristics, or utilize some systematic search strategies that guarantee, at least local, optima. One convenient and popular way of describing such strategies is to use the concepts of tree searching. Tree is a structure of sub-trees, these sub-trees can be searched in parallel or in series. Each sub-search can be executed on a standard computer, or a parallel or a quantum computer. The theory that we present here relates thus both to the entire tree search problem and to each sub-search problem.
The problem of creating complex heuristic strategies to deal with combinatorial problems in CAD is very similar to that of general problem-solving methods in Artificial Intelligence and Robotics. There are five main principles of problem solving in AI:

· state-space approaches including constraint satisfaction,

· problem decomposition,

· automatic theorem proving,

· rule-based systems,

· learning methods (neural nets, abductive nets, immunological, fuzzy logic, genetic algorithm, genetic programming, Artificial Life, etc.).

Since we will limit the discussion in this chapter to the description of the state-space principle, the approach that we will use is based on the assumption that any (combinatorial) problem of our class can be solved by searching some space of states. The space is enormously large in practical problems and it has a certain structure or not. If the space has no structure, not much can be done other than making the search as parallel as possible. But usually the space has some type of structure and this structure should be used to design the improved search method.

Search in space of states seems to be the best approach because of its simplicity, generality, adaptability, parallelization, parameterization and other nice properties. By using this approach, the sets of problems within this framework are not greatly restricted.
There are also other reasons for choosing the state-space heuristic programming approach:

6.2.1a. The combinatorial problem can be often reduced to integer programming, dynamic programming, or graph-theoretic problems. The graph-theoretic approaches include in particular, the set covering, the maximum clique, and the graph coloring. The computer programs that would result from pure, classical formulations in these approaches would not sufficiently take into account the specific features and heuristics of the problems. Instead reducing to known models, we will create our own general model, and "personalize" it to our problems. For instance, instead of using a standard (proper) graph coloring approach, we may formulate the compatible graph coloring problem, an adaptation of proper graph coloring that uses also other constraints. Moreover, we use heuristic directives based on our data to solve the modified/adapted problem efficiently. The problems are rather difficult to describe using these standard formulations. The transition from the problem formulation, in these cases, to the working version of the problem-solving program is usually not direct and cannot be automated well. It is difficult to experiment with strategy changes, heuristics, etc. These parameterized experimentations are one of our main goals here in case of standard computers. The same rules and methods can be however used also in future to quantum computers. We aim at the model's flexibility, and of the model’s being able to easily tune its parameters experimentally. In a sense, we are looking at a "fast prototyping" possibility. Now we cannot use our model fully on quantum simulators, as we do not dispose a parallel system of quantum simulators. But we will be able hopefully to use CUDA for this task. (Paul).
6.2.1b. Some of these combinatorial problems (or similar problems) have been successfully solved using the state-space heuristic programming methods. The state-space methods include some methods that result from other AI approaches mentioned above. Some backtracking methods of integer programming, and graph-traversing programs used in graph partitioning and clustering methods, are for instance somewhat similar to the variable partitioning problem. They can be considered as special cases of the problem-solving strategies in the space of states.
6.2.1c. Other problems were solved using Genetic Algorithm as it was not possible to use another type of search because of problem size. Hopefully, quantum computing will allow to create algorithms of higher quality and efficiency, including exact minimizations for problem instances that are not possible on standard computers.

6.2.1d. We found that there are, in most cases, some straightforward procedures to convert search algorithms to quantum oracle problem formulations. This is only a beginning of research and we are mostly restricted to Grover Algorithm. We will be interested in Hogg algorithm in next chapters.
Roughly speaking, several partial problems in logic CAD can be reduced to the following general model:

6.2.2a. The rules governing the generation of some set
[image: image2.wmf]S

, called state-space, are given. This space can be created in series and in parallel, in standard world or in quantum world. This set is in most cases implicitly defined, not explicitely. Explicit formulation is only in the simplest games and puzzles used as illustrations.
6.2.2b. Constraint conditions exist which, if not met, would cause some set
[image: image3.wmf]S

S

Î

¢

 to be deleted from the set of potential solutions. Again, this deletion can be done in series or in parallel, in standard or in quantum computing spaces.
6.2.2c. The solution is an element of S that meets all the problem conditions.
 6.2.2d. The cost function
[image: image4.wmf]F

 is defined for all solutions. This function is calculated in series, in parallel or in a mixed serial/parallel way. It is calculated by software or by hardware. The hardware oracle block is combinational in quantum synthesis but it may have memory and automata components in quantum or non-quantum hardware. We are not interested in quantum automata in this book.
 6.2.2e. The solution (one, more than one, or all of them) should be found such that the value of the cost function is optimal (quasi-optimal) out of all the solutions.
A problem condition pc is a function with arguments in
[image: image5.wmf]S

 and values true and false. For instance, if set
[image: image6.wmf]S

 is the set of natural numbers:

 pc1(x) = true – if x is a prime number; false - otherwise
In general, a problem can be defined as an ordered triple:
[image: image7.wmf]),

,

,

(

F

PC

S

P

=

 where:

6.2.3a. PC is a set of predicates on the elements
[image: image8.wmf]S

 of, called problem conditions. In standard design the conditions are checked for one candidate at a time. However, the power of quantum computing is that all conditions are verified for all the states being solution candidates in parallel.
6.2.3b. F is the cost function that evaluates numerically the solutions. Solution is an element of S that satisfies all the conditions in PC.

 The tree search method includes:

6.2.3b.1. The problem P,

6.2.3b.2. The constraint conditions,

6.2.3b.3. Additional solution conditions that are checked together with the problem conditions,

6.2.3b.4. The generator of the tree. Generation can be done in parallel, in series, in quantum, in standard software, using sequential or combinational circuit.
6.2.3b.5. The tree-searching strategy. The strategy can be parallel, serial, quantum, standard software, etc. As discussed earlier. The strategy is usually composed of several sub-strategies. Only in didactic examples we will use pure strategies that are not mixed.
Additional solution conditions are defined to increase the search efficiency.

For instance, assume that there exists an auxiliary condition that is always satisfied when the solution conditions are satisfied, but the auxiliary condition can be tested less expensively than the original solution conditions. In such case the search efficiency is increased by excluding the candidates for solutions that do not satisfy this auxiliary condition. This can be done in the same search process or in another search process, executed subsequently. Standard processor gives more flexibility but quantum computer gives more processing power and parallelism.
The additional solution conditions together with the problem conditions are called solution conditions. The method is complete if it searches the entire state-space and thus assures the optimality of the solutions. Otherwise, the entire space is not searched and the search methods will be referred to as incomplete methods. Obviously, for practical examples most of our searches will use incomplete search methods. Although quantum computer gives enormously high processing power comparing to standard computers, they will be also restricted as we will formulate more complex problems for them. Thus incomplete and approximate methods will be always of use, only the complexity of the problems will dramatically increase.
We will illustrate these ideas for the case of the minimal covering (set covering, unate covering) problem, which has several applications. For instance, the problem is defined as follows:
A. The problem is represented as a rectangular table with rows and columns. Each column is to be covered with the minimum total cost of rows. The state-space
[image: image9.wmf]S

is a set that includes all of the subsets of the set of rows of the covering table (rows correspond for instance to prime implicants contained in a Boolean function [Kohavi70].
B. The solution is an element of
[image: image10.wmf]S

 that covers all the columns of the function.
C. A cost function assigns the cost to each solution. The cost of a solution is the number of selected rows. It may also be the total sum of the selected rows and their costs.
D. A solution (set of rows) should be found that is a solution and minimizes the cost function.
E. Additional quality functions are also defined that evaluate states and rows in the search process.
F. This process consists of successively selecting "good" rows (based on the value of the quality function), deleting other rows that cover fewer of the matrix columns (these are the dominated rows), and calculating the value of the cost function.
G. The cost value of each solution cover found can then be used to limit the search by backtracking.
H. This process can be viewed as a search for sets of rows in the state-space, and can be described as a generation of a tree(solution tree) using rows as operators, sets of rows as nodes of the tree, and solutions as terminal nodes.
A combinatorial problem of a set covering type can either be reduced to a covering table, or solved using its original data structures. Finally it can be reduced to a logic equation (Petrick Function) which is evaluated in software, in standard (classical oracle) or in a quantum oracle. It has been shown by many authors [Cordone01], that the following classical logic synthesis problems, (among many other), can be reduced to the Set Covering Problem.

These problems are:
(1) the PLA minimization problem.
(2) the finding of vacuous variables.
(3) the column minimization problem.
(4) the microcode optimization problem.
(5) the data path allocation problem.
(6) the Three Level AND/NOT Network with True Inputs (TANT) minimization problem.
(7) the factorization problem.
(8) the test minimization problem, and many other classical logic synthesis problems.
(9) the layout minimization problems, including ancilla bits minimization in quantum circuits.

(10) the ESOP minimization problem.

Therefore, the Set Covering, Even/odd covering, Binate covering, and many similar (selection) problems can be treated as a generic logic synthesis subroutine. Several efficient algorithms for this problem have been created [Dill97, Perkowski99, Files97, Files98, Files98a]. Some of these algorithms can be used also to create oracles.

The methods presented here can be applied to all problems presented in chapters 2, 3, 4, 7 – 11 and specifically to:

1. Finding minimum realization in the sense of number of elementary pulses for quantum gates (chapter 2)

2. Finding minimum realization of PPRM for incompletely specified function

3. Finding minimum realization of FPRM for completely and incompletely specified function

4. Finding minimum realization GRM for completely and incompletely specified functions

5. Finding minimum realization for all kinds of affine circuits for various polarities.

6. Finding minimum realizations for all other canonical forms and ESOP.

We can use the search ideas from this chapter to solve efficiently all these problems. Some will be illustrated. Equivalently, we believe that some of the ideas from the literature about optimization and oracle construction can also be used to extend the search framework presented by us, both its classical and quantum aspects.
Moreover, various methods of reducing a given problem to the Set Covering Problem exist. These methods would result in various sizes of the covering problem. By a smart approach, the problem may still be NP-hard, but of a smaller dimension. For a particular problem then, one reduction will make the problem practically manageable, while the other reduction will create a non-manageable problem. This is true, for instance, when the PLA minimization problem is reduced to the set covering with the signature cubes [Brayton87] as columns of the covering table, rather than the minterms as the columns of this table. Such reduction reduces significantly the size of the covering table. Similar properties exist for the Graph Coloring, Maximum Clique, reversible logic synthesis, ESOP minimization, quantum circuit minimization and other combinatorial problems of our interest. Although the problems are still NP-hard as a class, good heuristics can solve a high percent of real life problems efficiently. This is because of the Occam's Razor principle – circuits described by engineers are not random circuits – the random circuits are the most difficult to minimize, but hopefully there is no use to minimize them so they will be not a subject of optimizations.

Many other partial problems for CAD of classical computers, including those in high-level synthesis, logic synthesis, and physical CAD, can also be reduced to a class of NP-hard combinatorial problems that can be characterized as the constrained logic optimization problems. This is a subclass of the constraint satisfaction problems.
These problems are described using binary and multiple-valued Boolean functions, various graphs and multi-graphs, arrays of symbols or other specifications. Some constraints are formulated on these data, and some transformations are executed in order to minimize the values of cost functions. These problems include Boolean satisfiability, tautology, complementation, set covering [Hochbaum82], clique partitioning [Pozak95], maximum clique [Jou93], generalized clique partition, graph coloring, maximum independent set, set partitioning, matching, variable partitioning, linear and quadratic assignment, encoding, and others. These entire problems can be realized as quantum oracles, and we will illustrate several of them in chapters 9 and next.
With respect to high importance of these problems, several different approaches have been proposed in the literature to solve them. These approaches include:

1. Mathematical analyses of the problems are performed in order to find the most efficient algorithms (the algorithms may be exact or approximate). If this cannot be achieved, the algorithms for particular sub-classes of these problems are created. This can speed up solving problems on large classes of practical data, in spite of the fact that the problems are NP-hard so that no efficient (polynomial) algorithms exist for them. For instance, the proper graph coloring problem is NP-hard, but for a non-cyclic graph there exists a polynomial complexity algorithm. How practical is the polynomial algorithm, it depends only on how often non-cyclic graphs are found in any given area of application where the graph coloring is used.
2. Special hardware accelerators are designed to speed-up the most executed or the slowest operations on standard types of data used in the algorithms.
3. General purpose parallel computers, like message-passing hypercube processors, SIMD arrays, data flow computers and shared memory computers are used [Duncan90]. Some ideas of parallel, systolic, cellular and pipelined hardware can be applied to building quantum oracles. For instance, the sorter absorber circuit that we use for converting lists to sets in quantum oracles has been adapted from pipelined sorters used in standard hardware.
4. The ideas of Artificial Intelligence, computer learning, genetic algorithms, and neural networks are used, also mimicking humans that solve these problems. In this book we also follow some of these ideas [Nilsson71].
6.3. Multi-strategic Combinatorial Problem Solving
6.3.1. Basic Ideas of Multi-strategic search
The goal of this section is to explain how the general objectives outlined in sections 6.1 and 6.2 can be realized in programs and hardware systems to solve combinatorial problems. It is well-known that the difference between hardware and software has been recently blurred with the introduction of reconfigurable computers and Field Programmable Gate Arrays. It should be thus clear to the reader that many of ideas that we present below are applicable to both software and hardware, including quantum oracles.

Some of the methods presented here have been already programmed, some other not yet. Some have been used to design quantum oracles from next chapters, some other are not incorporated into the book as they lead to very complex circuits and would expand the book too much. Our interest is in a uniform explanation and the creation of state-space tree search methods that would be general and independent on the computing substrate. Our first goal is Fast Prototyping. By fast prototyping, we want the program to be written or a system to be designed in such a way that the developer will be able to easily change the program/hardware for each experiment. This is illustrated by the set covering software and by the way of building respective logic oracles in chapter 12.

Our general methodology includes an important component of changing the problem description variants and create various search strategies for different tree search methods to optimize the efficiency of the search.

The tree-search strategy was created by selecting respective classes and values of strategy parameters. The creation of multiple variants of a tree-searching program, that could require weeks of writing and debugging code would then be possible in a shorter period of time. Some efficiency during execution will be lost, but the gain of being able to test many variants of the algorithm will be much more substantial. The behavior of the variants of the tree search methods will then be compared and evaluated by the developer to create even more efficient algorithms.
[image: image11.emf]
Figure 6.3.1.1: Example of T1 type tree generator of a full tree.
Figure 6.3.1.1 presents a tree generator. Such generator can be used in software or standard hardware. It generates all subsets of a set of elements {1, 2, 3}. This generation can be done in series or in parallel. It can be decomposed to many sub-trees. In case of quantum processing, the generation is done as creating binary vectors corresponding to subsets and all these vectors are superposed within a single unit search sub-process. For instance, we can imagine a hierarchical system that has parallel structure of quantum computers. The initial problem for set {1, 2, 3} is created in a processor corresponding to node n0. It is decomposed serially to two sub-problems, Sub-problem-1 is for the sub-tree with nodes n1, n4, n7, n5. Another sub-problem, Sub-problem-2 has nodes n2, n6 and n3. Observe that the Sub-problem-2 is the complete search of all subsets of set {2, 3} so it has a general nature which can be used to build a quantum computer for all subsets of set {2, 3}. The Sub-problem-1 includes all solutions with element 1, and in addition it searches the subsets of set {2, 3}. Thus another quantum computer can be constructed for set {2,3} which in addition knows that element 1 is selected. These quantum computers can be realized dynamically using a quantum software/hardware design approach that extends standard FPGAs. We call it Reconfigurable Quantum FPGA. In this simple example we have Processor-0 which is a standard processor, and two subordinated to it processors: Processor-1 and Processor-2 that execute Sub-problem-1 and Sub-problem-2, respectively. Observe that when one of the quantum processors finds a solution it informs the Processor-0 about the cost value and the Processor-0 can change its strategy of giving values and sub-problems to subordinated quantum processors. It can also reconfigure them, by practically designing them from scratch using quantum circuit design. For instance, in case of graph coloring, if a proper coloring with a new cost value k is found, if this value is much lower than the current assumed or computed value, the processors are redesigned for a smaller value of k, which means a smaller number of qubits encoding every node of the graph. This will be illustrated in more detail in chapters 9 and next.
6.3.2. Description of the Solution Tree

6.3.2.1. Basic concepts
The search strategy realizes some design task by seeking to find a set of solutions that fulfill all problem conditions. It checks a large number of partial results and temporary solutions in the tree search process, until finally it determines the optimality of the solutions, the quasi-optimality of the solutions, or just stops when any solution is found.
6.3.2.1. The state-space S for a particular problem solved by the program is a set which includes all the solutions to the problem. The elements of S are referred to as states. New states are created from previous states by application of operators. During the realization of the search process in the state-space, a memory structure termed solution tree, solution space, is used. These states should be not confused with quantum states from the quantum evolution that is executed in the oracle.
6.3.2.1.1. The solution tree is defined as a graph: D = [NO, RS]. A solution tree contains nodes from set NO, and arrows from the set of arrows RS. Nodes correspond to the stages of the solution process (see Figure 6.3.1.1 and Figure 6.3.1.2.)
6.3.2.1.2. Each arrow is a pair of nodes ni1, ni2. Arrows are also called oriented edges. They correspond to transitions from stages to stages of the solution process.
6.3.2.1.3. An open node is the node without created children, or immediate successors. A child of child is called grandchild. If s is a child of p then p is a parent of s. A successor is defined recursively as a child or a successor of a child. A predecessor is defined recursively as a parent or a predecessor of a parent.
6.3.2.1.4. A semi-open node is a node that has part of its children created, but not yet all of its children are implicitly formed.
6.3.2.1.5. A closed node is a node, where all of its children have already been created in the tree.
6.3.2.1.6. The set of all nodes corresponding to the solutions will be denoted by SF.

6.3.3. Terminology and Notations
The Sub-Spaces of the Solution Space are related to its structure.

In the solution space we can distinguish the following sub-spaces:

6.3.3.1. actual solution space - the space which has a representation in the computer memory (both RAM and disk),
6.3.3.2. potential solution space - the implicit space that can be created from the actual space using operators and taking into account constraints,
6.3.3.3. closed space - the space which has already been an actual space for some time, but has been removed from the memory (with exception of the solutions).
6.3.3.4. As the search process grows, the actual space is at the expense of the potential space. The closed space grows at the expense of the actual space. The actual space is permanently modified by adding new tree segments and removing other segments. Sometimes the closed space is saved in hard disk, and re-used only if necessary.

6.3.3.5.By “opening a node” we will mean creating successors of this node. The way to expand the space, called the search strategy, is determined by:
 (6.3.5.1) the way the open and semi-open nodes are selected,
(6.3.5.2) the way the operators applied to them are selected,
(6.3.5.3) the way the termination of search procedure is determined,
(6.3.5.4) the conditions for which the new search process is started, and
(6.3.5.5) the way the parts of the space are removed from the memory.

6.3.3.6. The arrows in the tree are labeled by the descriptors of the operators. Each node contains a description of a state-space state and some other search-related information. In particular, the state can include the data structure corresponding to the descriptors of the operators that can be applied to this node. Descriptors are some simple data items. For instance, the descriptors can be: numbers, names, atoms, symbols, pairs of elements, sets of elements. The choice of what the descriptors are, is often done by the programmer. Descriptors are always manipulated by the search program. (In some problems, they are also created dynamically by the search program.) Descriptors can be stored in nodes or removed from the descriptions of nodes. As an example of using descriptors, we will discuss the case where the partial solutions are the sets of integers. In this problem then, the descriptors can be the pairs of symbols (aritmetic_operator, integer). The application of an operator consists in taking a number from the partial solution and creating a new number. This is performed like this:

 <new_number> := <number> <aritmetic_operator>< integer>
The number is replaced in the partial solution of the successor node by the new_number.
6.3.3.7. In those cases that the descriptors are dynamically created, the programs that create them are called the descriptor generators. They generate descriptors for each node one-by-one, or all of them at once. The operators traverse the tree from a node to a node. Operator is a concept that corresponds to applying certain program to nodes of the solution tree. This program has the descriptor as its parameter. Creating new nodes of the tree is equivalent to searching among the states of S.
6.3.3.8. Each of the solution tree's nodes is a vector of data structures. For explanation purposes, this vector's coordinates will be denoted as follows:
· N - the node number,
· SD - the node depth,
· CF - the node cost,
· AS - description of the hereditary structure,
· QS - partial solution,
· GS - set of descriptors of available operators.
6.3.3.9. Additional coordinates can then be defined, of course, as they are required.

Other notations used:

· NN - the node number of the immediately succeeding node (a child),
· OP - the descriptor of the operator applied from N to NN,
· NAS - actual length of list AS,
· NQS - actual length of list QS,
· NGS - actual length of list GS.

6.3.3.10. The operator is denoted by OPi, and it's corresponding descriptor by ri. An application of operator OPi with the descriptor ri to node N of the tree is denoted by O(ri, N). A macro-operator is a sequence of operators that can be applied successively without retaining the temporarily created nodes.

 6.4. Formulating a Problem

A prerequisite to formulating the combinatorial problem in the search model is to ascertain the necessary coordinates for the specified problem in the initial node (the root of the tree). The way in which the coordinates of the subsequent nodes are created from the preceding nodes must be also found. This leads to the description of the generator of the solution space (tree generator). Solution conditions and/or cost functions should be formulated for most of the problems. There are, however, generation problems (such as generating all the cliques of a specific kind), where only the generator of the space is used to generate all the objects of a certain kind.

6.4.1. QS is the partial solution: that portion of the solution that is incrementally grown along the branch of the tree until the final solution is arrived at. A set of all possible values of QS is a state-space of the problem. According to our thesis, some relation
[image: image12.wmf]S

S

RE

´

Î

 of partial order exists usually in S. Therefore, the state
[image: image13.wmf]S

s

Î

 symbolically describes the set of all
[image: image14.wmf]S

s

Î

¢

 such that s RE s'. The solution tree usually starts with QS(N0) which is either the minimal or the maximal element of S. All kinds of relations in S should be tried to find by the researcher/developer, since they are very useful in creating efficient search strategies.
6.4.2. The set GS(N) of descriptors denotes the set of all operators that can be applied to node N.
6.4.3. AS(N) denotes the hereditary structure. By a hereditary structure we understand any data structure that describes some properties of the node N that it has inherited along the path of successor nodes from the root of the tree.

6.4.4. The solution is a state of space that meets all the solution conditions.
6.4.5. The cost function CF is a function that assigns the cost to each solution.
6.4.6. The quality function QF can be defined as a function of integer or real values pertinent to each node, i.e., to evaluate its quality. It is convenient to define the cost and quality functions such that

[image: image15.wmf])

(

)

(

N

CF

N

QF

£

 and if QS(N) is the solution, then QF(N) = CF(N) Equation 6.4.1
6.4.7. TREE(N) denotes a subtree with node N as the root. Often function QF(N) is defined as a sum of function F(N) and function
[image: image16.wmf])

(

ˆ

N

h

:

[image: image17.wmf])

(

ˆ

)

(

)

(

N

h

N

CF

N

QF

+

=

 Equation 6.4.2
6.4.8.
[image: image18.wmf])

(

ˆ

N

h

 evaluates the distance h(N) of node N from the best solution in TREE(N). F(N), in such a case, defines a partial cost of QS(N), thus
[image: image19.wmf])

(

ˆ

N

h

 is called a heuristic function. We want to define
[image: image20.wmf]h

ˆ

 in such a way that it as close to h as possible (see [Nilsson71] for general description and mathematical proofs).
6.4.9. Cost function f
A theoretical concept of function f is also useful to investigate strategies as well as cost and quality functions. This function is defined recursively on nodes of the extended tree, starting from the terminal nodes, as follows:
f(NN) = CF(NN) when the terminal node NN is a solution from SF, Equation 6.4.3
 f(NN) =
[image: image21.wmf]¥

 when the terminal node NN is not a solution, Equation 6.4.4
f(N) = min (f(Ni)), for all which Ni are the children of node N. Equation 6.4.5
This function can be calculated for each node only if all its children have known values, which means practically that the whole tree has been expanded. f(N) is the cost of the least expensive solution for the path which leads through node N. We assume that the function CF can be created for every node N (and not only for the nodes from the set SF, of solutions), it holds that the following must also be true

[image: image22.wmf])

(

)

(

N

f

N

CF

£

 Equation 6.4.6
and

[image: image23.wmf])

(

)

(

N

CF

NN

CF

³

 for
[image: image24.wmf])

(

N

SUCCESSORS

NN

Î

 Equation 6.4.7
The general idea of the Branch and Bound Strategy consists in having a CF that satisfies equations 6.4.1, 6.4.2, and 6.4.3. Then, knowing a cost CFmin of any intermediate solution that is temporarily treated as the minimal solution, one can cut-off all sub-trees TREE(N) for which CF(N)> CFmin (or,
[image: image25.wmf]min

)

(

CF

NN

CF

³

 when we look for only one minimal solution).

 In many problems it is advantageous to use a separate function QF, distinct from CF, such that CF guides the process of cutting-off sub-trees, while QF guides the selection of nodes for expansion of the tree.
In particular, the following functions are defined:
g(N) the smallest from all the values of cost function calculated on all paths from N0 to N. Equation 6.4.8
h(N) the smallest from all the values of increment of cost function calculated from N to some
[image: image26.wmf]F

k

S

N

Î

. This is the so-called heuristic function. Equation 6.4.9
f(N) = g(N) + h(N). Equation 6.4.10
Since function h cannot be calculated in practice for node N during tree's expansion, and g is often difficult to find, some approximating functions are usually defined. Function CF approximates function g. Function
[image: image27.wmf]h

ˆ

 approximates function h, such that

[image: image28.wmf])

(

ˆ

)

(

)

(

N

h

N

CF

N

QF

+

=

QF(N) Equation 6.4.11

[image: image29.wmf]0

)

(

ˆ

)

(

³

³

N

h

N

h

 Equation 6.4.12

[image: image30.wmf])

,

(

)

(

)

(

N

M

h

N

h

M

h

£

-

 Equation 6.4.13
where h(M,N) is the smallest of all increment values of cost function from M to N, when M,
[image: image31.wmf]F

S

N

Ï

. It also holds that:

 QF(N) = CF(N) for
[image: image32.wmf]F

S

N

Î

 Equation 6.4.14

[image: image33.wmf]0

)

(

ˆ

)

(

=

³

N

h

N

h

 for
[image: image34.wmf]F

S

N

Î

 Equation 6.4.15
Functions defined like this are useful in some search strategies, called Nilsson A* Search Strategies. Sometimes while using branch-and-bound strategies it is not possible to entirely define the cost function g(N) for
[image: image35.wmf]F

S

N

Ï

. However, in some cases one can define a function QF such that for each N.

[image: image36.wmf])

(

)

(

N

g

N

QF

£

 Equation 6.4.16
For nodes
[image: image37.wmf]F

S

N

Î

 one calculates then g(N) = CF(N), and then uses standard cut-off principles, defining for the remaining nodes Ni: CF(Ni) = QF(Ni), and using function CF in a standard way for cutting-off. A second, standard role of QF is to control the selection of non-closed nodes. (By non-closed nodes we mean those that are either open or semi-open.) One should then try to create QF that plays both of these roles.

A quasi-optimal or approximate solution is one with no redundancy; i.e., if the solution is a set, all of its elements are needed. When the solution is a path in a certain graph, for example, it has no loops. An optimal solution is a solution
[image: image38.wmf]S

s

N

QS

Î

=

)

(

 such that there does not exist
[image: image39.wmf]S

s

Î

¢

 where QF(s) > QF(s'). The problem can have more than one optimal solution. The set of all solutions will be denoted by SS. Additional quality functions for operators can also be used.
6.4.10. Descriptors and tree types
 In many combinatorial problems, the set of all mathematical objects of some type are needed: sets, functions, relations, vectors, etc. For example, the following data are created:

· The set of all subsets of prime implicants in the minimization of a Boolean function.

· The set of all subsets of bound variables in the Variable Partitioning Problem.

· The set of all two-block partitions in the Encoding Problem.

· The set of maximal compatibles in the Column Minimization Problem.

These sets can be generated by the respective search routines created for them in a standard way, that use the generators of trees. This is useful in direct problem descriptions.
It is desirable to develop descriptor generators for several standard sets, several types of tree generators, many ordering possibilities for each generation procedure, and several tree extension strategies for each ordering. The type of tree is defined by two generators: the generator that creates the descriptors, and the generator that generates the tree. A full tree is a tree created by the generators only, ignoring constraint conditions, quality functions, dominations, etc. Full trees of the following types exist:

· T1 - a tree of all subsets of a given set,

· T2 - a tree of all permutations of a given set,

· T3 - a tree of all one-to-one functions from a set A to set B.

and many others.
[image: image40.emf]
Figure 6.4.10.1: Examples of tree generators.
[image: image41.emf]
Figure 6.4.10.2: More examples of tree generators.
The type T1 tree generator of the full tree of the set of all set's {1, 2, 3} subsets, as shown in Figure 6.3.1, can be described as follows.

1. Initial node} (root) is described as:

[image: image42.wmf];

)

(

0

f

=

N

QS

 Equation 6.4.10.1

[image: image43.wmf]};

3

,

2

,

1

{

)

(

0

=

N

GS

 Equation 6.4.10.2
where
[image: image44.wmf]f

 is an empty set, and N0 is the root of the tree.

2. In a recursive way, the children of any node N are described as follows:

[image: image45.wmf]}]

|

)

(

{

)

(

};

{

)

(

)

(

))[

(

(

1

1

r

r

N

GS

r

NN

GS

r

N

QS

NN

QS

N

GS

r

>

Î

=

È

=

Î

"

 Equation 6.4.10.3
where NN is some child of node N, and r is the descriptor of the operator that creates the new nodes in this tree. Set GS is either stored in the node or its elements are generated one by one in accordance with the ordering relation > while calculating the children nodes.

Figure 6.4.10.1 and Figure 6.4.10.2 present examples of full trees for many important combinatorial problems. They show the partial solutions in nodes and the descriptors near arrows.
The trees in Figure 6.4.10.1 are:
(a) the tree of all subsets of set,

(b) the tree of all permutations of a set,
(c) the tree of all binary vectors of length 3,
(d) the tree of all two-block partitions of set {1, 2, 3, 4},
(e) the tree of all partitions of set {1, 2, 3, 4},
(f) the tree of all covers of set {1, 2, 3, 4} with its subsets.

The trees in Figure 6.4.10.1 and 6.4.10.2 are the following. Figure 6.4.10.1 a presents the tree for all 3-element numerical vectors, such that they sum is a constant in every level. In the first level the sum is 3, in the second level the sum is 4, in the third level the sum is 5, in the fourth level the sum is 6. Figure 6.4.10.2 presents the tree of all subsets of set {1, 2, 3, 4, 5}.The tree generates levels of equal distance from the subset {1, 2, 3}, in the second level there are subsets that differ by one from {1, 2, 3}. All descriptors from set {1, 2, 3, 4, 5} are checked in the first level. If the descriptor is in the subset, it is subtracted, if the descriptor is not in the subset, it is added. In all next levels, the sets of descriptors for each node are created in exactly the same way as in the standard tree for all subsets, that have been shown in detail in Figure 6.4.2. Others can be explained in a similar way.
6.4.11. Encoding for GA and Search Algorithms to synthesize quantum circuits.

Genetic algorithm is used as a component in our general search framework. We do not explain it as it is popularly known.
As an illustration, in this section we introduce a notation that will be useful to explain not only genetic algorithm but also search and other algorithms to synthesize quantum circuits in a systematic and uniform way. Let us denote the whole column of a 3×3 quantum array by a symbol. For instance, symbols A, B and C are used in Figure 6.4.11.1 below to denote the Feynman gate with EXOR down, the Feynman gate with EXOR up and the Toffoli gate with lowest bit as the target (the bit with exoring), respectively.
[image: image46.png]

Figure 6.4.11.1: Symbols for columns of a Quantum array used to encode genes in a chromosome of a GA for 3×3 quantum arrays synthesis. For instance the Toffoli gate controlled from two top qubits is denoted by capital letter C.
[image: image47.emf]
Figure 6.4.11.2: Circuit corresponding to the Chromosome BCB, which is the quantum circuit for the Fredkin gate composed from two Feynman gates and the Toffoli gate.

The functional circuit from Figure 6.4.11.2 (the phenotype) corresponds to the Chromosome BCB (genotype).
Figure 6.4.11.3 illustrates hypothetical operation of the Genetic Algorithm to find the circuit from Figure 6.4.11.2. The analysis/simulation method as in Chapter 2 is used to calculate the fitness function and to verify the correctness of the solution genotype circuit from Figure 6.4.11.2. Figure 6.4.11.4 illustrates the operation of the exhaustive breadth-first search algorithm for the same task. As we see, the GA and the tree are just two different strategies to search the same space of character strings. Our intelligent learning algorithm from this chapter 6 uses these two “pure” search methods, many other methods and also combined search methods as its special cases.

[image: image48.emf]B C C A B A B C C A A B

A A C

A A B

C C B C A B A B B

A B C B C B

A

à

C C

à

B B

à

C C

à

A

C A C

Solution

Initial

Population of

parents

Children

Next

generation

mutated

Crossovers

Mutations

Figure 6.4.11.3: Operation of the Genetic Algorithm to find the chromosome BCB leading to the phenotype circuit from Figure 6.4.11.2.

[image: image49.emf]C A B

A B A C B A B B B C CA CB CC

A A

A A A A A B A A C

B CA B CB

A

B

C

A

B

C A

B

C A B

C

A

B C

A

B

C

Solution

 Figure 6.4.11.4: Operation of the exhaustive breadth first search algorithm to find the circuit from Figure 6.4.11.2. The fitness function uses as its component the circuit’s cost function which is the same as in the GA.
6.5. Creating Search Strategies
A number of search strategies can be specified for the tree search procedure along with the quality functions. Beginning with the initial node, the information needed to produce the solution tree can be divided into global information, that relates to the whole tree, and local information, that is concerned only with local subtrees. Local information in node N refers to subtree TREE(N). The developer-specified search strategies are, therefore, also divided into a global search and a local search. The selection of the strategy by the user of the Universal Search Strategy from section 6.6 is based on a set of strategy describing parameters. By selecting certain values, the user can, for instance, affect the size of subsequent sets of bound variables or the types of codes in the encoding problem. We assume also that in the future we will create smart strategies that will allow to dynamically change the strategy parameters by the main program during the search process. Such strategies, that for instance search breadth-first and after finding a node with certain properties switch to depth-first search, have been used with successes in Artificial Intelligence. Let us distinguish the complete search strategies that guarantee finding all of the optimal solutions from the incomplete strategies that do not. Both the complete and the incomplete search strategies can be created for a complete tree search method. A tree searching strategy that is created for a complete tree search method and includes certain restricting conditions or cutting-off methods that can cause the loss of all optimal solutions is referred to as an incomplete search strategy for a complete search method. By removing such conditions a complete search strategy is restored, but it is less efficient.

 This approach offers the following advantages:
6.5.1. The quasi-optimal solution is quickly found and then, by backtracking, the successive, better solutions are found until the optimal solution is produced. This procedure allows to investigate experimentally the trade-offs between the quality of the solution and speed of arriving at it.
6.5.2. The search in the state-space can be limited by including as many heuristics as required. In general, a heuristic is any rule that directs the search. It will be more on the heuristics in the sequel.
6.5.3. The application of various quality functions, cost functions, and constraints is possible.
6.5.4. The problem can be described within several degrees of accuracy. The direct description is easy for the designer to formulate, even though it produces less efficient programs. It is created in the early prototype development stages, on the basis of the problem formulation only, and the heuristics are not yet taken into account. The only requirement is that the designer knows how to formulate the problem as a state-space problem using standard mathematical objects and relations. Only the standard node coordinates are used. The detailed description of the tree search method, on the other hand, provides the best program that is adequate for the specific problem but it requires a better understanding of the problem itself, knowledge about the program structure, and experimentation.
6.5.5. By using macro-operators along with other properties, the main strategies require less memory than the comparable, well-known search strategies [Nilsson71, Perkowski76].

6.6. General Strategies for search.
The search strategy is either selected from the general strategies, of which the following is a selection, or it is created by the developer's writing of the sections codes, and next the user assigning values to the strategy describing parameters.
6.6.1. Breadth-First. With this strategy, each newly created node is appended to the end of the so called open-list which contains all the nodes remaining to be extended: open nodes. Each time the first node in the list is selected to be extended, it is removed from the list. After all the available operators for this node have been applied, the next node in the open-list to be extended is focused on.
6.6.2. Depth-First. The most recently generated node is extended first by this strategy. When the specified depth limit SDmax has been reached or some other cut-off condition has been satisfied, the program backtracks to extend the deepest node from the open-list. This newly created node is then placed at the beginning of the open-list. The consequence is that the first node is also always the deepest.
6.6.3. Branch-and-Bound. The temporary cost B is assigned which retains the lowest cost of the solution node already found. Whenever a new node NN is generated, its cost CF(NN) is compared to the value of B. All the nodes whose costs exceed the value of B will be cut off from the tree.
6.6.4. Ordering. This strategy, as well as the next one, can be combined with the Branch-and-Bound strategy. A quality function Q(r, N) is defined for this strategy to evaluate the cost of all the available descriptors of the node being extended. These descriptors are applied in the operators in an order according to their evaluated cost.
6.6.5. Random. With this strategy, the operator or the open node can be selected randomly for expansion, according to the probability distribution specified.
6.6.6. Simulated annealing. This strategy transforms nodes from open list using the respective algorithm. This strategy is known from literature and will be no further discussed here.
6.6.7. Genetic algorithm. This strategy uses open list as a genetic pool of parents' chromosomes.
6.6.8. Quantum Grover Search. This is exhaustive strategy presented in Chapter 5. It can be simulated in standard software by exhaustive search based on standard combinational oracle.
(In case of ECPS which is the special case of QSPS all the strategy creating tools should be defined as C++ classes.)

The strategy describing subroutines and parameters are outlined in section 6.7 below.
6.7. Conditions in QSPS.
There are two types of conditions for each node of the tree: by-pass condition and cut-off condition. The cut-off condition is a predicate function defined on node N as an argument. If the cut-off condition is met in node N, the subtree TREE(N) is prevented from being generated and backtracking results. The by-pass conditions do not cause backtracking and the tree will continue to extend from node N. The following cut-off conditions exist:

6.7.1. Bound Condition. This condition is satisfied when it is found (possibly from information created in node N) that there exists node N1 (perhaps not yet constructed) such that CF(N1) < CF(N) and QS(N1) is a solution.
6.7.2. Depth Limit Condition. This condition is satisfied when SD(N) is equal to the declared depth limit SDmax.
6.7.3. Dead Position Condition. This condition is satisfied when no operators can be applied to N, i.e. GS(N) =
[image: image50.wmf]f

.

6.7.4. Restricting Conditions. Each of these conditions is satisfied when it is proved that QS(N) does not fulfill certain restrictions, i.e. no solution can be found in TREE(N), for one or another reason.

6.7.5. Solution Conditions of the Cut-Off Type. Any of these conditions is satisfied when the property of the problem is that if QS(N) is a solution, then for each M
[image: image51.wmf]Î

 TREE(N), CF(M) > CF(N) (or CF(M)
[image: image52.wmf]³

 CF(N)). Therefore, node M may be not taken into account.

6.7.6. Branch Switch Conditions and Tree Switch Condition. Satisfaction of Switch Condition causes modification of the actual search strategy to another strategy, resulting from the search context and previous conditional declaration of the user. This leads to the so-called Switch Strategies that dynamically change the search strategy during the process of search. For instance, the depth first strategy can be changed to breadth-first if certain condition is met.
6.7.7. Other types of conditions. They are formulated for some other type restrictions special to problems (selected by the user by setting flags in the main algorithm).
A value that interrupts the search when a solution node N is reached such that CF(N) = CFmin min is denoted by CFmin min. This is a known minimum cost of the solution. This value can be arrived in many ways, usually it comes from a calculated guess, or is derived by some calculation or by mathematical deduction. It may also be a known optimal cost. In most cases the value is a “guessed value”, that may be incorrect. Therefore, it will serve here only as one more control parameter.
When all the solution conditions are met in a certain node N, QS(N) is a solution to the given problem. This is then added to the set of solutions and is eventually printed. The value of CF(N) is retained. If one of the solutions is a "cut-off type solution", then the program backtracks. Otherwise, the branch is extended.
Similar strategies are used in case of parallel quantum programs/oracles. The only difference is that in quantum the granularity of search is with accuracy to whole sub-trees and not to single nodes with their successors. In theory, the granularity in quantum search can be also to small trees of a nodes with all its successors. For instance, the quantum computer may find all Boolean functions created from some function Fi by exor-ing it with all possible products of literals of some type. This will be illustrated in examples.
6.8. Relations on Operators and States
Determining some relations on operators (descriptors) is often very useful. Similarly, the developer may determine certain relations on states of the solution space, or on the nodes of the tree.

Having such relations allows to cut-off nodes. It allows also to remove dispensable descriptors from the nodes. Specifically, in many problems it is good to check solution conditions immediately after creating a node, and next immediately reduce the set of descriptors that can be applied to this node.

The following relations between the operator descriptors (so called relations on descriptors) can be created by the program developer to limit the search process:

· relation of domination,
· relation of global equivalence,
· relation of local equivalence.
We will define local and global domination relations. Operator O1 is locally dominated in node N by operator O2 (or descriptor r2 is locally dominated by r1) when:

[image: image53.wmf])

(

,

2

1

N

DOML

O

O

Î

 Equation 6.8.1
while relation DOML satisfies the following conditions:

 DOML is transitive Equation 6.8.2
and

[image: image54.wmf]))

(

)

(

(

)

,

(

2

1

2

1

O

f

N

O

f

DOML

O

O

£

Þ

Î

 Equation 6.8.3
 We will apply the notation:

[image: image55.wmf]2

1

2

1

)

,

(

O

L

O

DOML

O

O

define

f

-

Û

Î

 Equation 6.8.4
We will define operator O2 as locally subordinated in node N with respect to operator O1 (where r1, r2
[image: image56.wmf]Î

 GS(N)), if

[image: image57.wmf]1

2

2

1

O

L

O

O

L

O

f

f

/

-

-

Ù

 Equation 6.8.5
 This will be denoted by

[image: image58.wmf]2

1

O

L

O

f

 Equation 6.8.6
If
[image: image59.wmf]2

1

O

L

O

f

 in node N , then tree TREE(O2(N)) can be cut-off without sacrificing optimal solutions, since

 f(O1 (N)) < f(O2 (N)) Equation 6.8.7
It is easy to check that relation
[image: image60.wmf]»

L

 , defined as

[image: image61.wmf]2

1

O

L

O

»

[image: image62.wmf]define

Û

[image: image63.wmf]1

2

2

1

O

L

O

O

L

O

f

f

-

-

Ù

 Equation 6.8.8
is an equivalence relation, which we will call the Local Relation of Equivalence of Descriptors in node N. Relation
[image: image64.wmf]»

L

 partitions set GS(N) into classes of abstraction [ri]. It is obvious from these definitions, that when one wants to obtain only a single optimal solution being a successor of N, then from each class of abstraction [ri] only one element should be selected. All remaining elements should be removed from GS(N).

The relation of global domination gives better advantages than the local domination, in cases that such a relation of global domination can be defined. Operator O2 is globally dominated in tree TREE(N) by operator O1 when

[image: image65.wmf])

(

(

))

(

(

)

(

)

,

(

2

1

N

TREE

O

N

TREE

O

N

DOML

O

O

´

Ì

Î

 Equation 6.8.9
By O(TREE(N)) we denote the set of operators to be applied in tree TREE(N). Relation DOMG satisfies the following conditions:

 DOMG is transitive Equation 6.8.10
and

[image: image66.wmf])]

(

))

(

(

)

(

(

)

(

)

(

[

)))

(

(

(

)

(

)

,

(

1

2

1

2

1

1

1

2

1

1

1

2

1

M

GS

r

M

O

f

M

O

f

M

GS

r

M

GS

r

N

TREE

NO

M

N

DOMG

O

O

Ï

Ú

Î

Ù

Î

Ù

Î

Î

"

Þ

Î

 Equation 6.8.11
Similar to local relations, one can define relation
[image: image67.wmf]»

G

of global subordination in tree TREE(N), and relation
[image: image68.wmf]»

G

of global equivalence in tree TREE(N).

Relation
[image: image69.wmf]»

G

 partitions every set GS (M1) for each M1
[image: image70.wmf]Î

 NO(TREE(N)) into classes of abstraction.

If we have no intention to find all optimal solutions, then from each class of abstraction we take just one element, and the remaining operators are removed from GS (M1).

The following theorem can be proven.

Theorem 6.8.1. Let us denote by [ri] the global equivalence class of operator O1 in node N. If for each branch N, N1, N2 ,.... Nk of tree TREE(N) it holds
[image: image71.wmf])

(

)

(

)

(

2

k

N

GS

N

GS

N

GS

Ê

Ê

 then the descriptors from set [ri] \ ri can be immediately removed from all sets GS in all nodes in TREE(N).

When we want to use the relation of global equivalency in certain node N, and the property from this theorem does not hold, then it is necessary to calculate the descriptors, which should be not applied in node N (sometimes it can be easily done from an analogous set for the node being the parent of this node).
Node M is dominated by node N if
[image: image72.wmf])

(

)

(

M

f

N

f

£

[image: image73.wmf])

(

)

(

)

,

(

M

f

N

f

DOMS

M

N

£

Û

Î

 Equation 6.8.12
Similarly as before, we can introduce relations
[image: image74.wmf]f

f

s

s

,

-

 and
[image: image75.wmf]»

s

.

If ST1 and ST2 are two strategies, which differ only in their domination relations D1 and D2 (these can be relations of domination of any of the presented types) and if
[image: image76.wmf]2

1

D

D

É

 then
[image: image77.wmf]2

1

i

i

k

k

£

 for each of the introduced coefficients ki.

Observe, that by incorporating the test for the relation of domination (or equivalence) to an arbitrary strategy that generates all optimal solutions, there exists the possibility of sacrificing only some optimal solutions (or all the optimal solutions but one). This decreases the number of generated nodes, which for many strategies is good both with respect to the reduced time, and reduced memory. On the other hand, if evaluating relations is very complex, the time of getting the solution can increase. The stronger is the domination relation, the more complicated is its evaluation, or the larger is its domain. Therefore, the time for testing domination would grow. In turn, the more gain from the decreased number of generated nodes. Often it is convenient to investigate relation of domination only in nodes of the same depth, or on operators of some group. Theoretical analysis is often difficult and experimenting is necessary.

Finally, observe that domination relations are not based on function f, because the values of f are not known a'priori, while creating the levels of the tree. The domination relations are also not based on costs, but on some additional problem-dependent information of the program, about the nodes of the tree. These relations come from certain specific problem-related information. In most cases, the implication symbol in Equation 6.8.3 cannot be replaced by the equivalence symbol, since this would lead to optimal strategies with no search at all, and each branch would lead to optimal solutions.

6.9. Component Search Procedures of C++ realization of ECPS.
The Main Universal Search subroutine of a search program is in charge of the global search. It takes care of the selection of strategies, the arrangement of the open-list and the other lists as well as the decision making facilities related to the cut-off branch, and the configuration of the memory structures to store the tree. The lines of code that realize the strategies of breadth-first, depth-first, or branch-and-bound are built into the main search routine. Subroutines RANDOM1 and RANDOM2 are selectively linked for the random selection of the operator or the open node, respectively. The role of the subroutines linked to the Universal Search subroutine is as follows:

· GENER is responsible for the local search that extends each node. GENER cuts off the nodes which will not lead to the solution node when the description for the new node is created.

· GEN carries out the task of creating nodes.

Other subroutines, offered to create local search strategies, are the following:
· MUSTAND and MUSTOR are subroutines that serve to find two types of the so-called indispensable operators. (The indispensable operators are the operators that must be applied). All operators found are indispensable in the MUSTAND subroutine, and only one of operators is indispensable in case of the MUSTOR subroutine. The set of indispensable operators is next substituted as the new value of coordinate GS(N).
· subroutine MUSTNT deletes subordinate operators. Subordinate operators are those that would lead to solutions of higher costs, or to no solutions at all. The set MUSTNT(N) is subtracted from set GS(N).

Domination and equivalence conditions for the tree nodes can also be declared as follows:

· EQUIV cancels those nodes that are included in other nodes.

· FILTER checks whether the newly created node meets the conditions.

· SOLNOD checks the solution condition.

· REAPNT is used to avoid the repeated applications of operators when the sequence of operator applications does not influence the solution.

These local strategies, as well as the global strategies listed above, can be selected by reading the parameter values as input data. ORDER sorts the descriptors, QF calculates the quality function for the descriptors, and CF calculates the cost of the nodes.
6.9.1. Universal Search Strategy
In this section we will present the universal search strategy. First we will explain the meaning of all variables and parameters. Next the pseudo-code of the main strategy subroutine will be given, followed by the pseudo-code of its GENER subroutine.

6.9.1.1. Meaning of Variables and Parameters
CFmin - cost of the solution that is actually considered to be the minimal one. After a full search, this is the cost of the exact minimum solution.

 SOL - set of solutions actually considered to be minimal. If parameter METHOD = 1, then this set has always one element. When a full search has been terminated, this set includes solutions of the exact minimal cost.

 OPERT - list of descriptors, which should be applied to the actual state of the tree.

 OPEN - list of open and semi-open nodes.

 N - actual state of the space.

 NN - next state of the space (this state is actually being constructed from node N).

 OUTPUT - a parameter that specifies the type of the currently created node;

· when OUTPUT = 0, the created node NN is a branching node;

· when OUTPUT = 1, the created node NN is an end of a branch;

· when OUTPUT = 2, a quasioptimal solution was found, whereby by a quasioptimal solution we understand any solution that has the value of the cost function not greater than the user-declared parameter CFmin min .
CFmin min - a parameter assumed by the user, determined heuristically or methodically, the value that satisfies him.

QFmin - the actually minimal value of the quality function.

OPT - a parameter. When OPT = 1, then any solution is sought, otherwise the minimal solution.
PP9 - a parameter. When PP9 = 1, then the subroutine "Actions on the Selected Node" is called.

EL - actual descriptor from which the process of macro-generation starts (this is the first element of list OPERT).
DESCRIPTOR - actual descriptor during the macrogeneration process.

MUST - list of descriptors of operators, which must be applied as part of the macrooperator.

PG5 - a parameter. If PG5 = 1, then it should be investigated, immediately aftear the creation of node NN, if there exists a possibility of cutting-off node NN.

PG6 - a parameter. If PG6 = 0, then it should be investigated if node NN can be cut-off with respect to the monotonically increasing cost function CF, and in respect to satisfaction of CFmin = CF(NN).

PG6D - a parameter. If PG6D = 1, then value CFmin should be calculated with respect to a subroutine of a user, otherwise CFmin is calculated in a standard way as CF(NN).
PG6E - a parameter. If PG6E = 1, then the learning subroutine is called.
PG6F - a parameter. If PG6F = 1, then after finding a solution the actions declared by the user are executed.
PG7 - parameter; if PG7 = 1 then descriptors defined by other parameters are removed from GS(NN).
6.9.1.2. The Main Search Strategy
1. Set the parameter variables to the values that will determine the search strategy.

2. CFmin:= ∞, SOL := Ø, OPERT := Ø, OPEN := Ø.

3. Call the macrogeneration subroutine GENER for the user-declared initial state N0.

4. If the value of variable OUTPUT (this value is set by subroutine GENER) is 1 or 2 then, according to the declared parameters, return to the calling program for the problem, or select a strategy corresponding to the declared data.

5. State N0 has been (possibly) transformed by subroutine GENER. Store the new state in the tree. OPEN := N'0.
6. If OPEN = Ø then either return to the calling program, or change the search strategy, according to the parameters and the strategy change parameters for trees (Tree~Switch). (see section 6.2.8).
7. If the threshold values for the tree have been exceeded (size, time, etc) then return to the calling program, or change strategy, as in step 6. If the Stopping Moment Learning Program decides termination of the search, then this search process is terminated. Return to the calling program, that will decide what to do next (see section 2).
8. N := selected node from list OPEN. This step is executed on the basis of Strategy Selecting Parameters, including minimal values QF or CF. If parameters specify A* Strategy of Nillsson and QF(N) ≥ QFmin, then return to the calling program (since all minimal solutions have been already found).
9. If parameter PP9 = 1, then call subroutine “Actions on the selected node” (this subroutine can, for instance, declare such actions as: (1) cutting-off a node upon satisfying some condition, (2) sorting GS(N), (3) assigning GS(N) := Ø,(4) deleting redundant or dominated operators). OPERT := GS(N). Remove from list OPEN all closed nodes.

10. If OPERT = Ø then go to 6.

11. EL := OPERT[0], remove EL from list OPERT. (OPERT[0] selects the first element of list OPERT)

12. Call subroutine GENER.

13. If a Branch Switch Strategy has been declared and a respective switch condition is satisfied then execute the Branch Switch type modification of the search strategy.
14. If OUTPUT = 0, then store the node NN (created earlier by subroutine GENER) in the tree (if a tree data structure is used in addition to list OPEN). Insert this node in certain position in list OPEN. This position depends on the selected strategy. If OUTPUT = 2, then (if parameter OPT = 2 then return to the calling program, else go to 11).

15. Go to 11.

6.9.1.3. Subroutine GENER
1. If GENER is executed in step 13 of the main search strategy then MUST: = EL (value of EL has been previously set in the main search routine).

2. If MUST = Ø, then set OUTPUT: = 0, return.

DESCRIPTOR := MUST[0].

3. Call subroutine OPERATOR written by User. We denote this by O(N, DESCRIPTOR). This call generates the new state NN, for the DESCRIPTOR selected in step 3. GS(N) := GS(N) \ DESCRIPTOR (i.e. DESCRIPTOR is removed from GS(N)).

4. If parameter PG5 = 1 and (node NN satisfies on of the Branch Cut-Off Conditions or NN is dominated by another node), then cut-off node NN. OUTPUT := 1. Return. (the above condition means that node NN is equal to another node, or node NN is dominated by another node based on one of the relations: Node Domination, Node Equivalence, Node Subordination). If CF(NN) > CFmin (while looking for all minimal solutions) or If CF(NN) ≥ CFmin (while looking for a single minimal solution), then cut-off node NN. OUTPUT := 1, return.
5. If parameter PG6 = 0 then If CFmin = CF(NN) and the parameter specifies that CF is monotonically increasing and node NN does not satisfy all the user-declared Solution Conditions, then cut-off node NN, OUTPUT := 1, return. If node NN satisfies all the user-declared Solution Conditions, then
A. If CF(NN) ≤ CFmin and the A* Strategy of Nillsson is realized, then store QFmin := QF(NN).

B. If CF(NN) = CFmin, then
i. if all optimal solutions are sought, then append QS(NN) to the list of solutions SOL else do nothing.

C. If CF(NN) < CFmin then set SOL := QS(NN).

D. If parameter PG6D = 1, then calculate CFmin using the User Subroutine Calculating CFmin, else CFmin := CF(NN).
E. If parameter PG6E = 1, then call the subroutine "Parametric Learning the Quality Function for Operators".

F. If parameter PG6F = 1, then call the subroutine "Actions after Finding a Solution". This is a subroutine used to specify the actions to be executed after the solutionis found. These actions can be: printout, display, storage, etc.)

G. If CF(NN) = CFmin , then OUTPUT := 2, return.

6. If CF(NN) ≠ CFmin min , then OUTPUT := 1, return.
7. If PG7 = 1, then remove the indispensable descriptors from GS (NN). Depending on the values of parameters, the following types of descriptors are being removed:
(2) Inconsistent Descriptors,
(3) Descriptors that result from:
(3a) Local Subordination Relation,
(3b) Local Domination Relation,
(3c) Local Equivalence Relation,
(3d) Local Equivalence Relation,
(3e) Global Subordination Relation,
(3f) Global Domination Relation,
(3g) Global Equivalence Relation.
Use subroutine MUSTNT.
If a Condition of Node Expansion Termination is satisfied then set GS(NN) := Ø. If the set of Indispensable Operators of MUSTOR type is declared and respective Condition of operators of MUSTOR type is satisfied, then set GS(NN) := MUSTOR(GS(NN)).

1. N := NN.

2. If MUST ≠ Ø, then go to 2. else MUST := set of Indispensable Descriptors of MUSTAND type in GS(N). Go to 2.
The first call of subroutine GENER is intended to check if the indispensable operators of type MUSTAND exist in the initial state given by the user. These operators are applied to the successively created states, until a solution is found, or a node is found, in which no longer exist any indispensable descriptors. When subroutine GENER is returned from, the state N0 may have been transformed. The condition to find the minimal solution is to terminate with empty list OPEN. In steps 8 and 9, with respect to the strategy determining parameters, the node for expansion is selected, together with the operators that will be applied to this node. This node can be the open or semi-open type. Open means all possible operators have been applied to it. Semi-open, means some operators (descriptors) were applied but other descriptors remain, ready to be applied in a future. Selected descriptors are successively applied to the node, until list OPERT is cleared.

The value of parameter OPT is determined by the user. If OPT = 1, then the subroutine will return to the calling program after finding the first quasi-optimal solution.

Subroutine GENER is used to find and apply macro-operators. Descriptor EL, selected in the main search program, is put to list MUST of indispensable descriptors (except of the call in step 3).Such approach has been chosen in order to check if some indispensable descriptors exist in the initial state. It is known for all subsequent nodes that there are no indispensable descriptors, since if there were an indispensable descriptor in a node created by GENER, it would be immediately applied. Therefore, the result of subroutine GENER is always a single child, that has no indispensable operators.

In a general case, pure branch-and-bound strategy (discussed below) will terminate in steps 4 and 6 of the main search strategy. The A* strategy of Nilsson will terminate in step 8.

Of course, in lists OPEN, OPERT and other lists, not objects are stored, but pointers to them.

6.10. Pure Search Strategies

In this section we present the so-called pure search strategies. They will not require strategy-switching. Many of these strategies are known from the literature. Pure strategies are the following.

1. Strategy STQF is defined as follows: QF(SEL1QF (OPEN)) = min Ni
[image: image78.wmf]Î

OPEN QF(Ni), SEL2(x) = x
 Equation 6.10.1
SEL1 is the node selection strategy and SEL2 is the descriptor selection strategy. In this strategy, all children of node N are generated at once. This corresponds to the "Ordered Search" strategy, as described in [Nilsson71, Ibaraki76].
If, in addition to the above formula 6.10.1 function QF satisfies conditions 6.4.8, 6.4.9, 6.4.10, 6.4.11, 6.4.12 then it corresponds to the well-known A* strategy of Nilsson.

2. Strategy STCF (strategy of equal costs), in which: CF(SEL1CF (OPEN)) = min Ni
[image: image79.wmf]Î

OPEN CF(Ni), SEL2(x) = x
 Equation 6.10.2
3. This is a special case of the strategy from point 1.

4. Depth-first Strategy SEL1d (OPEN) = the node that was recently opened, SEL2(x) = x
5. Breadth-first Strategy SEL1b(OPEN) = the first of the opened nodes, SEL2(x) = x
6. Strategy STd,s,k (depth, with sorting and selection of k best operators) SEL1d,s,k(NON-CLOSED) = the node that was recently opened, SEL2d,s,k(GS(SEL1(NON - CLOSED))) = set that is created by selecting the first k elements in the set GS(SEL1(NON-CLOSED)) sorted in nondecreasing order according to function {qN}i. A particular case of this strategy is STd,s,1, called the Strategy of Best Operators (Best Search Strategy).

7. Strategy STd,s,s,k (i.e. the depth-search strategy, with the selection of a node, sorting, and the selection of the k best operators). SEL1d,s,s,k(NON-CLOSED) = a node of minimum value of function QF among all nodes that are created as the extension of the recently expanded node (not necessarily of the recently opened node). SEL2d,s,s,k = similarly to SEL2d,s,k . Similarly, one can define "k-children" strategies STQF,k, STCF,k, STd,k.

8. Strategy STRS of Random Search. SEL1RS(NON-CLOSED) = randomly selected node from NON-CLOSED. SEL2RS (GS(SEL1RS (NON - CLOSED))) = randomly selected subset of descriptors.

9. Strategy STRS,d of Random Search Depth. SEL1RS,d(NON-CLOSED) = recently opened node from NON-CLOSED. SEL2RS (GS(SEL1RS,d (OPEN))) = randomly selected descriptor.

Similarly, one can specify many other strategies by combining functions SEL1 and SEL given above.
Let us now introduce few measures of quality of strategies.
k1 = CARD(Ba), where Ba is the set of all closed and semi-open nodes that were created until all minimal solutions have been found.
k2 = CARD(Bs), where Bs is the set of all closed and semi-open nodes that were created until one minimal solution has been found.

 k3 = CARD(Va), where Va
[image: image80.wmf]Ê

 Ba is the set of all closed, semi-open, and open nodes that were created until all minimal solutions have been found.

k4 = CARD(Vs), where Vs
[image: image81.wmf]Ê

 Ba is the set of all closed, semi-open, and open nodes that were created until one minimal solution has been found.

k5 = CARD(Ta), where Ta
[image: image82.wmf]Ê

 Ba is the set of nodes that were created until proving the minimality of solutions, it means the total number of nodes that have been created by a strategy that searches all the minimal solutions.

k6 = CARD(Ts), similarly to k5, but for a strategy that searches a single solution.

k7 = max SD(Ni) - the length of the maximal path (branch) in the tree.

The advantage of the ordered search strategy is the relatively small total number of generated nodes (coefficients k5 and k6). The following theorem is true, similar to the theorem from Nilsson [Nilsson71].

Theorem 6.10.1. If QF satisfies equations 6.4.8, 6.4.9, 6.4.10, 6.4.11, 6.4.12 and the ordered search strategy has been chosen (i.e. the strategy A* of Nilsson is being realized) and when some solution of cost QF' has been found, such that all nodes of costs smaller than QF' have been closed, then this solution is the exact minimal solution.
It is important to find conditions, for which this algorithm finds the optimal solution, generating relatively few nodes. The theorem below points to the fundamental role of function
[image: image83.wmf]h

ˆ

. The way in which function
[image: image84.wmf]h

ˆ

 is calculated, can substantially influence the quality of solutions in approximate version, or efficiency of the algorithm in exact version.

Let ST1 and ST2 be two A* Nilsson strategies, and
[image: image85.wmf]1

ˆ

h

 and
[image: image86.wmf]2

ˆ

h

 their heuristic functions. We will define that strategy ST2 is not worse specified than strategy ST2 when for all nodes N it holds:

[image: image87.wmf]0

)

(

ˆ

)

(

ˆ

)

(

2

1

³

³

³

N

h

N

h

N

h

 Equation 6.10.3
which means, both functions evaluate h from the bottom, but function
[image: image88.wmf]1

ˆ

h

 does it more precisely than
[image: image89.wmf]2

ˆ

h

 .

Theorem 6.10.2. If ST1 and ST2 are A* Nilsson strategies, and ST1 is not worse specified than ST2, then, for each solution space, the set of nodes closed by ST1 (before the minimal solution is found) is equal to the set of closed nodes of ST2, or is included in it.

This theorem says, in other words, that if we limit ourselves to A* Nilsson strategies only, then there exists one strategy, not worse than all remaining strategies, since it closes not more nodes of the tree than any other strategy. This is the strategy that most precisely evaluates the function h, preserving of the equations 6.4.9, 6.4.10, 6.4.11.

For many classes of problems the ordered search strategy is very inefficient because it generates its first solution only when very many nodes have already been created. Next it proves its optimality relatively quickly. In cases, when the user wants to find quickly some good solution, but the exactness of the solution is only of secondary importance, it is better to use one of the variants of the branch-and-bound strategies that search in depth.

[image: image90.emf]e

1

e

2

e

3

s

1

s

2

s

3

m

1

m

2

Figure 6.10.1: The example of the lattice with three maximum and two minimum elements. Arrows show the partial order relation.
6.10.1. Properties of branch-and-bound strategy.
Many properties can be proven for the branch-and-bound strategy presented above. We assume that

for each N, NN, QF(N) ≠ QF(NN) and QF(NN) > QF(N) for NN
[image: image91.wmf]Î

 SUCCESSORS(N) Equation 6.10.1.1
6.10.1.1. The branch-and-bound strategy is convergent, independent on function QF. Also the specific strategies included in it (such as “depth-first”, “ordered search”, etc,) are therefore convergent as well, if the user has not declared some additional cut-off conditions (that may cause the loss of the optimal solution). Some of these strategies do not require calculating function QF satisfying certain conditions. This property is an advantage of the given above universal search strategy, when compared with the A* Nilsson Strategy.
6.10.1.2. If the user is able to define the quality function QF* such that

[image: image92.wmf])],

(

)

(

)

(

*

)

(

*

)[

,

(

1

j

j

i

j

i

N

f

N

f

N

QF

N

QF

N

N

£

Þ

<

"

 Equation 6.10.1.2
then the strategy STQF is optimal in the sense of the number of opened nodes. Only the nodes that are on the paths leading to solutions are extended (other nodes are also opened).
6.10.1.3. If additionally the user succeeds to find a quality function for operators q*N that is consistent with f,

[image: image93.wmf]))],

(

(

)

(

)

(

*

)

(

*

)[

,

,

(

2

1

2

1

2

1

N

O

f

O

f

O

q

O

q

O

O

N

N

N

£

Þ

>

"

 Equation 6.10.1.3
then the strategy is optimal in the sense of the number of generated nodes. Only those nodes are expanded, that lay on those paths that lead to minimal solutions. In addition, no other nodes are opened (this concerns the 1-child strategies).
6.10.1.4. It is possible to introduce the relation of partial ordering << on the set of all possible strategies STQF. It can be proven that the strategies that are adjacent in the sense of this order have also similar behavior:

 if STQF1 << STQF2 then k1 ≤
[image: image94.wmf]1

i

k

 for we = 1,2,...,6.
 Equation 6.10.1.4
6.10.1.5. The best strategy with respect to relation << (the minimal element of the lattice), is the strategy STQF*. The "adjacent" strategies are defined. Next it can be proven, that if QF0, QF1,,QFq is a sequence of such adjacent functions, then the corresponding strategies,
[image: image95.wmf],

,......,

,

1

0

q

QF

QF

QF

ST

ST

ST

 are adjacent in the lattice of strategies. Therefore, in the class of the ordered search strategies function ST is in a sense a continuous function of function QF: small changes of QF cause small changes of STQF. If QF ≈ QF * then behavior of STQF is close to optimal. If the user is able to make choices among all functions QF, then by the way of successive experimental modifications he can approach the STQF* strategy.
6.10.1.6. Since strategies “depth-first” are very sparsely located in the lattice (they have high distances from one another), small changes of QF can cause a "jump" from STQF* to a lattice element that is located far from it. Similarly, small modification of QF in the direction of QF* do not necessarily lead to the improvement of the algorithm's behavior.
6.10.1.7. It can be shown, that in the sense of some of the measures introduced above, the proposed algorithm is better than the branch-and-bound algorithms investigated by Ibaraki [Ibaraki76].

Usually, the user should always try to find function QF close to QF*. With better functions QF, the program will find good solutions sooner, where by good solution we understand those with small values of CFmin (the decrease of coefficients k1 - k4). Therefore, the cut-off of subsequent branches will be done with a smaller value, which will in turn decrease the values of k5 and k6. When the depth-first strategy is selected, the changes in behavior can occur in jumps. In addition, with respect to 3), the user has to select function q. With respect to equations 6.8.3 - 6.8.12, respectively, he has to define relations on descriptors and states.

When constructing the strategies, the user has also to keep in mind the following.

6.10.1.8. Generally, for those branch-and-bound strategies that search in depth, it is necessary to define that every branch of the tree terminates with a solution found. In addition the branch is determined with certain constructive conditions of cutting-off (for instance, the cutting-off occurs when certain depth of the tree was reached, or when there are no more operators to apply). The lack of these conditions may lead to the danger of infinite depth-search, or a very long depth-search. For instance, in case of strategy STd,1. This condition is not necessary for A* Nilsson strategy, which is a special case of the strategy.
6.10.1.9. With respect to parameters k1 - k4, the strategies that combine properties of strategies STd,s,s,k, A* Nilsson Strategy, and STd,s,k, have the best performance.
6.10.1.10. With respect to parameter k7 the 1-child strategies are the best, and the STd,s,1, strategy in particular.
6.10.1.11. When the user looks for a solution with the minimal depth in the tree, the breadth-search strategy creates theoretically the exact solution as the first solution generated, which is sometimes good. However, the tree can grow often so rapidly, that the strategy cannot be used. Yet in other problems, it is good to use the disk memory. The strategy is useful when the problem is small, or when one can define powerful relations on descriptors or relations on states of the search space.
6.10.1.12. When the depth is limited or when good upper bounds can be found, the depth-first strategies allow to find the solutions faster. Depth-first strategies are good when there are many solutions. They are memory efficient. These strategies are not recommended when the cost function does not increase monotonically along the branches, allowing thus to use the cutting-off.
6.10.1.13. Strategies STQF, and STd,s,k, often require the shortest times of calculations. The second strategy requires a smaller memory.
6.10.1.14. By constructing strategies that use quality functions one has to take into account that the evaluation of a more complex function allows to decrease the search. It takes, however, more time. Therefore, the trade-offs must be experimentally compared.
6.10.1.15. It is possible to combine all presented strategies, and also to add new problem-specific properties to the strategies. The user can, for instance, create from the depth-first strategy and breadth-first strategy a new strategy that will modify itself while searching the tree, and according to the intermediate solutions found. Another useful trick is to cut-off with some heuristic values, for instance some medium value of CFmin and CFmin min.
6.10.1.16. An advantage of random strategies is a dramatic limitation of required space and time. These strategies are good, when used to generate many good starting points for other strategies, and these other strategies find next the locally optimum solutions.

6.11. Switch Strategies

6.11.1. Principles
There are two types of Switch Strategies:

· switch strategies for branches,

· switch strategies for trees.

Below, we will present them both.

A Switch Strategy is defined by using the conditional expression:

 [sc1 → (MM1, TREE1),......., scn → (MMn, TREEn)] Equation 6.11.1.1
where
1. sc1,....., scn are switch conditions,

2. MMi = (Mi, STi) are methods to solve problems by Universal Strategy,

3. Mi are tree methods,

4. STi are pure strategies,

5. TREEi are initial trees of methods MMi (trees after strategy switchings).

The meaning of formula 6.11.1.1 is the following. If condition sc1 is satisfied, then use method MM1 with initial tree TREE1. Else, if condition sc2 is satisfied, then use method MM1 with initial tree TREE2. And so on, until sc1 is encountered.

In practice, Mi, STi and TREEi are defined by certain changes to the actual data. These can be some symbolic transformations, or numeric transformation. They can be also the selections of new data structures. Therefore one has to declare the initial data: M0, ST0 and TREE0 .

· In Switch Strategy for a Branch, the conditions sci i, we = 1 ,..., n are verified when a new node is created. These conditions can be also verified in one of the following cases:
(1) a new node being a solution is created,
(2) a node is found, being a solution better than the previous solution. The type of the node is specified by the parameters.

· In the Tree Switch Strategy, the conditions are checked after a full tree search of some type has been completed.

In both types of strategies, the conditions of switching strategies can be defined on:
· nodes NN,

· branches leading from N0 to NN ,

· expanded trees.

There can exist various Mixed Strategies STM , defined as follows
 STM = (SSTT , SSTB) Equation 6.11.1.2
where

SSTT - is a Tree Switch Strategy,

SSTB - is a Switch Strategy for a Branch.

For both the Switching Strategies for Tree, and Switching Strategies for Branches, there exist eight possible methods of selecting changes. These methods are specified by one of the subsets of the set < Mi, STi , TREEi > In a special case, by selecting an empty set, changes of Mi, STi or TREEi are not specified. This corresponds to a pure strategy ST0 (which was declared as the first one). Pure strategies are therefore a special case of the switch strategies.

Similarly, complex methods, defined as CM = (M1,....,Mr, STM) are generalizations of methods MMi .

Changes of TREEi , Mi , and STi will be now presented.

1. The following changes of TREEi has been considered.
· change of coordinates of nodes (locally, or in a branch, or in the whole tree),

· adding or removing some coordinates (locally, or in a branch, or in the whole tree),

· cut-off the tree.
2. Changes of Mi by use of a switch strategy can be executed by specifying new components of the solution space. The strategy for Graph Coloring from new text found in chapter is an example of a switching strategy that changes both TREE and M.

3. Strategy is modified by determining the Change of Strategy Parameters. For instance, the modification of the strategy consists in:
(1) a permutation of list OPEN,
(2) a selection of some its subset,
(3) some modification to list OPERT.
Since the entire information about the solution tree is stored in list OPEN, the new strategy can start working immediately after the Branch Switch. The Main Universal Search Subroutine is constructed in such a way, that even by applying the switch search strategy it is still possible to obtain the exact solution.
6.11.2. Examples of Switch Strategies
 6.11.2.1. The Far-Jumps Strategy. This strategy finds solutions with high mutual distances in the solution space. At first, the Breadth-First Strategy with macro operators and dominance relations is used to develop a partial tree. Together with each node N of the tree also its level in the tree, SD(N), is stored. A node from OPEN that has the smallest level is selected. Next the “depth-first” strategy is used until the first solution is found. The program evaluates, using some additional method, whether this is a minimum solution, or a satisfactory solution. When program evaluates that this was not the minimum solution, the “strategy switch” is executed. The strategy switch is executed as follows.
(1) the node with the lowest level in the actual list OPEN is selected;
(2) this node is added at the beginning of list OPEN. Starting from this node, the tree is expanded again using the depth-first strategy, until the next solution is found, etc. With each solution, the order of nodes in OPEN can be modified.
6.11.2.2. The Distance Strategy. An advantage of this switch strategy is that the successively generated solutions are placed far away one from another. This gives the possibility of “sampling” in many parts of the space, which can lead to quicker finding of good cut-off values (this happens thanks to the jumping-out of the local minima of the quality function). It may be useful, that the “sampling” property is the opposite to the “depth-first” or other pure search strategies.
6.11.2.3. The Strategy of Best Descriptors. The principle of this strategy is that it stores, for some pure strategy (for instance the depth-first, or the ordered-search), all the descriptors that proved to be the most useful in finding the previous solution. Sometimes, only some of these descriptors are stored. For instance, the dominating descriptors, or the descriptors with the highest values of cost or quality functions are stored. After switch, these descriptors are placed at the beginning of list OPERT, and are therefore used as the first ones in the next tree expansion. The switch strategies of this type can be applied to find quickly good cut-off values in branch-and-bound strategies.
6.11.2.4. Strategy of Sequence of Trees. This is an example of a strategy that switches trees. It expands some full tree, or a tree limited by some global parameters (time, number of nodes). Next, using some additional principles, it selects few nodes, SEL_NODES, of the expanded tree (for instance, the nodes with the minimum value of the cost function). Finally, the strategy expands new trees, each starting from those that start from SEL_NODES nodes. It usually uses a different set of components of the space, and/or pure strategy in these new trees. In particular, one of the strategies selects a new set of descriptors. Another strategy of this type, calculates the value of CFmin as some function of CFmin and other parameters, including the probabilistic evaluations of CFmin , min during the moment of switching. This strategy is not complete, but it can substantially limit the search by backtracking from smaller depth values.
6.12. Standard versus Quantum Searches.

The methods discussed in sections 6.1 – 6.11 are general and applicable to any parallel processor. For instance, in several problems the best bound search can be realized using repeatedly a single (quantum) Grover processor with oracles modified at every search run.
Example 6.12.1:

Let us analyze for example the PPRM minimization for an incompletely specified function from Figure 6.12.1a. The first quantum search is extended among 2n positive polarity groups (groups being all products of variables and a group “1”).

The positive polarity groups are represented in the Positive Polarity Exor Map from Figure 6.12.1b. Each of these groups (product terms) is realized by one cell of this map. The quantum oracle evaluates the quality function to be maximized being the ratio of ones to zeros in each group. The group c from Figure 6.12.1a is selected as the cheaper one of two groups with the same ratio (circled on top right in Figure 6.12.1b). This selection is done using the first run of Grover with the oracle. After exoring the group c, Figure 6.12.2, the second call to Grover is extended which returns the group ab with ratio 2/0. Exoring this group from function from Figure 6.12.2b creates a function “0” (Figure 6.12.2b) so the search is completed. A general search pattern for this kind of “sequential quantum algorithms” is presented in Figure 6.12.3.

Although this particular example is trivial, it illustrates well the principle of parallel search that uses Grover-based quantum computers.

[image: image96.emf]ab

cd

4/3 3/3

00 01 11 10

00

01

11

10

3/1 3/1

1/1 1/2 2/2

1/1

1/1

0/1

1/1

1/1

0/1

1/1

0/1

1/2

ab

cd

- -

00 01 11 10

00

01

11

10

1 -

1 0 -

1

1

-

-

-

0

-

-

0

f

Select

#”1"/#0

Positive

Polarity

 Exor Map

 (a) (b)

Figure 6.12.1: (a) Incomplete function to be realized as a PPRM, (b) Positive Polarity Exor Map with costs of product terms.

[image: image97.emf]ab

cd

- -

00 01 11 10

00

01

11

10

1 -

1 0 -

1

1

-

-

-

0

-

-

0

f

ab

cd

- -

00 01 11 10

00

01

11

10

0 -

0 0 -

1

0

-

-

-

1

-

-

0

f (1)

ab

cd

- -

00 01 11 10

00

01

11

10

0 -

0 0 -

0

0

-

-

-

0

-

-

0

f (2)

ab(2/0)

Solution c ab 

c (3/1)

 (a) (b) (c)

Figure 6.12.2: Exhaustive/greedy strategy based on repeated calls of quantum Grover Algorithm. (a) The original incomplete function to be minimized as a PPRM circuit. (b) the function f (1) to be realized after exoring the best group c with one-to-zero ratio 3/1, (c) the function f (2) to be realized after exoring the best group ab with ratio 2/0 selected in the second call of Grover. As this function f(2) is “0” the search is completed and solution f = c
[image: image98.wmf]Å

 ab is returned as the best PPRM for f from Figure 6.12.1a. Of course, only one branch of the search tree is shown here for simplification.

[image: image99.emf]Exhaustive quantum

search in the space of 2

n

groups for f

group

g

0000

= 1

(4/3)

group

g

0011

= cd

(3/1)

group

g

0010

= c

(3/1)

group

g

1111

(0/1)

Best group found

Function f(1) = f c



Solution f = c ab



function f

group ab

Exhaustive

quantum search in

the space of 2

n

groups for f(1)

... ...

...

...

...

One-to-zero

ratio for group

g

1111

= abcd

Figure 6.12.3: Visualization of search space of an exhaustive/greedy strategy extended by sequential calls to the quantum Grover accelerator. At each stage Grover Algorithm Accelerator is called to execute exhaustive search of the best product term to be chosen. This visualization illustrates the search from Figures 6.12.1 and 6.12.2.
The multi-strategy search algorithm can be applied to both classical and quantum computing. For instance the heuristics to find a good lower or upper bound in graph coloring are useful in all of the following: classical software, Grover oracle construction and in a hybrid hierarchical parallel search system. In case of classical search the set of descriptors is at the beginning equal to the number of nodes N . When a solution with k < N nodes is found the search is repeated with only k color descriptors and possibly other strategy is chosen. The same principle is used in quantum search. The Optimizing Oracle assuming N colors would be in most cases very wasteful, so we run a Decision oracle with few iterations probabilistically. The repeated (or parallel) measurements after few Grover Loop iterations will find some solution candidates which are verified on classical computers. This way a good upper bound k colors is found that is next used to construct a smaller oracle. Similarly, finding a maximum clique of a graph can be used to find the lower bound of a chromatic number and next run Grover from it increasing the number of expected colors (see chapter 12).
Example 6.12.2:

Figure 6.12.4 presents application of tree searching for ESOP minimization with “more ones than zeros” heuristics to an incompletely specified function. The function is different than in the previous Example 6.12.1. The single literal groups are: a,
[image: image100.wmf]a

, b,
[image: image101.wmf]b

, c,
[image: image102.wmf]c

, d,
[image: image103.wmf]d

. The 1/0 ratios for these groups are the following:

 a - 2/2,
[image: image104.wmf]a

 - 2/2, b - 2/1,
[image: image105.wmf]b

 - 2/3, c – 2/3,
[image: image106.wmf]c

 - 2/1, d – 4/2,
[image: image107.wmf]d

 - 0/2.

[image: image108.emf]ab

cd

0 1

00 01 11 10

00

01

11

10

0 -

1 - -

-

1

-

-

-

0

-

1

-

(2/1)

ab

cd

1 0

00 01 11 10

00

01

11

10

0 -

1 - -

-

1

-

-

0

0

-

0

-

b (2/1)

ab

cd

0 0

00 01 11 10

00

01

11

10

1 -

0 - -

-

0

-

-

-

1

-

0

-

ab

cd

0 0

00 01 11 10

00

01

11

10

0 -

0 - -

-

0

-

-

0

1

-

0

-

ab

cd

0 0

00 01 11 10

00

01

11

10

0 -

0 - -

-

0

-

-

0

0

-

0

-

ab

cd

0 1

00 01 11 10

00

01

11

10

0 -

0 - -

-

1

-

-

-

1

-

0

-

ab

cd

0 1

00 01 11 10

00

01

11

10

0 -

0 - -

-

0

-

-

0

0

-

1

-

ab

cd

0 1

00 01 11 10

00

01

11

10

0 -

0 - -

-

0

-

-

1

0

-

0

-

Fun 1

Fun 2

Fun 4

Fun 3

Fun 7

Fun 5

ab

cd

0 0

00 01 11 10

00

01

11

10

0 -

0 - -

-

0

-

-

-

0

-

0

-

Fun 6

Fun 8

) (c a d b d c ad b

    

Solution

c

d (4/2)

ad (2/1) ac (2/1)

abc (1/0)

) 0 / 1(c b a

) 0 / 2 (d c

Cut-off as the literal

cost plus expected

cost exceeds the literal

cost of solution Fun 8

Literal cost = 1

Fun 9

Solution

Final cost: seven 2 × 2 gates

) (b a c d abc c b a d

    

Final cost: seven 2 × 2 gates

Literal

 cost = 1

Literal

 cost = 1

Literal cost = 1

Literal

 cost = 4

Literal

 cost = 3

Literal

 cost = 7

Literal

 cost = 5

Literal

 cost = 3

Figure 6.12.4: ESOP minimization search for an incomplete function Fun 1(a, b, c, d). This search is based on “more-ones-than-zeros” heuristics, which can however lead to various subtrees and different hybrid quantum strategies. We recall that the 3×3 Toffoli gate costs five 2×2 gates. This is how the final costs are calculated.
Thus groups b,
[image: image109.wmf]c

 and d are evaluated as the best choices, as reflected in the first level of search from Figure 6.12.4. Now this search is done exhaustively on a parallel quantum processor from Figure 6.12.5. From function Fun1 the functions are created: Fun2 by exoring group d, Fun3 by exoring b and Fun4 by exoring
[image: image110.wmf]c

. Out of these functions Fun2 has 2 true minterms while Fun3 and Fun4 have 3 true minterms each. Nodes Fun 2, Fun 3 and Fun 4 are added to the OPEN List of the Master Serial Processor. Node Fun2 of the tree is therefore selected for expansion by Best Bound Tree Search Algorithm as it has the smallest value of the evaluation function. Now the two Slave Processors with quantum co-processors are used to execute parallel quantum search. One is allocated the node Fun 2 and another is allocated the node Fun 3. Node Fun 4 remains in list Open in Master for future expansion. Using the method as in the previous example 6.12.1 the first quantum processor finds the solution
[image: image111.wmf])

(

b

a

c

d

Å

Å

 with the cost of seven 2 × 2 gates and the second processor finds solution
[image: image112.wmf])

(

c

a

d

b

Å

Å

 with the same cost. After backtrack in the standard processor of second quantum processor (the Slave Processor 2) function Fun 9 is found which has a literal cost of 3. But as the groups to cover minterms have at least Literal cost 3 each, 3 + 3 = 6 > 5 which was a literal cost of the solution from node Fun 8. This search branch is thus cutted-off. As both Slave Processors are now finished the Master decomposes Fun 4 and allocates new tasks (not shown) to both Slaves. The process goes on until the final solution is found.

[image: image113.emf]Master

Slave Processor 1 Slave Processor 2

Quantum co-

processor 1

Quantum co-

processor 2

Figure 6.12.5: Master Slave Processor with quantum co-processors used in Example 6.12.2.
Observe that this search method can be applied to PPRM, KRM, GRM, affine extensions, etc. Virtually every problem from this book can be solved like this. Observe also that this method is heuristic, because it uses approximate quality functions and incomplete search in Master. This method can be improved in many ways, using analysis and methods as discussed in sections 6.12 – 6.16 and next chapters. For instance, the search strategy from Example 6.12.2 can be improved by adding a special method to analyze linear variables. This is illustrated below.
Theorem 6.12.1. Function can be represented in the form: f (a, b, c, d) = a
[image: image114.wmf]Å

 g(b, c, d) iff f
[image: image115.wmf]Å

 a does not depend on a, i.e.

[image: image116.wmf]0

0

=

Å

=

¶

¶

a

a

g

g

or

a

g

. In such case variable a is called the linear variable of function f. It is always worthy to extract first all linear variables from the function that is minimized and next perform the search. This linearization applies to every search sub-problem.

[image: image117.emf]ab

cd

1 1

00 01 11 10

00

01

11

10

1 1 1

-

1

1

1 - -

ab

cd

1 1

00 01 11 10

00

01

11

10

0 0

1 1 1

-

0

0

0

0

1

-

1

-

(a)

(b)

g (a, b, c, d)

h = g(a, b, c, d) a



a



h does not depend on a

0 0

0 0

0

Figure 6.12.6: Verifying if variable a is a Linear Variable of function g(a, b, c, d). (a) the original function g(a, b, c, d), (b) the function h = g(a, b, c, d)
[image: image118.wmf]Å

 a. The arrows illustrate the graphical (mirror) verification if
[image: image119.wmf]0

=

¶

¶

a

h

. In this case it is so as the minterms on both ends of each arrow are the same. Thus h does not depend on a .
Example 6.12.3:

Figure 6.12.6a illustrates a function of 4 variables, g (a, b, c, d), to be minimized as ESOP. To check if this function has a linear variable a we create function h = g (a, b, c, d)
[image: image120.wmf]Å

 a (Figure 6.12.6b). As illustrated in Figure 6.12.6b function h does not depend on variable a, thus g (a, b, c, d) = a
[image: image121.wmf]Å

 ĥ (b, c, d).

[image: image122.emf]d

0

0

ab

cd

0 1

00 01 11 10

00

01

11

10

1 - -

-

1

-

0 - -

ab

cd

0 1

00 01 11 10

00

01

11

10

0 -

1 - -

-

0

-

-

1

1

-

0

1

f (a, b, c, d)

f

1

(b, c, d)

a

folding for a

0 -

-

1 0

f

1

(b, c, d)

0 0 1

-

1

0 1 -

0

1

b

0 0 1

-

1

1 0 -

0

1

b

f

2

(c, d)

b

0 1 0 1

cd

00 01 11 10

f

2

(c, d)

0 1 1 0

cd

00 01 11 10

f

3

(d)

1

1

Solution

d c b a

  

folding for b

Final cost: four 2 × 2 gates



c





f (a, b, c, d)

= FUN 1 (a, b, c, d)

Figure 6.12.7: Tree search with additional linearity test. There is no branching as the function f(a, b, c, d) happens to be linear so the exact solution f (a, b, c, d) = a
[image: image123.wmf]Å

b
[image: image124.wmf]Å

c
[image: image125.wmf]Å

d is found directly by a sequence of extracting linear variables.
Thus variable a is a linear variable of g(a, b, c, d) which should be used in ESOP minimization. We will repeat therefore now the search from previous Example 6.12.2 trying first to extract all linear variables. The process of extracting all linear variables from function Fun 1 from Figure 6.12.4 is presented in Figure 6.12.7. At first it is verified that a is a linear variable of f(a, b, c, d) thus f1(b, c, d) is created such that f(a, b, c, d) = a
[image: image126.wmf]Å

 f1(b, c, d). It is found next by exoring and folding for b that f1(b, c, d) = b
[image: image127.wmf]Å

 f2(c, d). Finally it is found that f2(c, d) = c
[image: image128.wmf]Å

 f3(d) = c
[image: image129.wmf]Å

 d. Thus f(a, b, c, d) = a
[image: image130.wmf]Å

b
[image: image131.wmf]Å

c
[image: image132.wmf]Å

d and the solution is found without any branching, with the final cost of only four 2×2 gates.
This example, together with the previous ones illustrate the power and ease of creating various search strategies using a hybrid hierarchical quantum computer.
6.13. Example of Application: The Covering Problem
The following examples of some partial problems will illustrate the basic ideas involved in the state-space search.The examples will show also the methods that are used to formulate problems for multi-purpose search routines like those proposed in previous sections of this chapter.
6.13.1. The Formulation of the Set Covering Problem
 This problem is used in Column Minimization for decomposition. It is also widely encountered in logic design (among others, in PLA minimization, test minimization, multilevel design - see many recent examples in [Perkowski87]. As an example, let us consider the covering table shown in Figure 6.13.1.

[image: image133.emf]
Figure 6.13.1: A Covering Table With Equal Costs of Rows

Each row has its own cost indicated by the value to the right of it. In this example, they are all equal. An X at the intersection of row ri and column cj means that row ri covers column cj . This can be described as:

 (ri , cj)
[image: image134.wmf]Î

 COV
[image: image135.wmf]Ì

 R × C, Equation 6.13.1.1
or briefly, by COV(ri , cj).

A set of rows which together cover all the columns and have a minimal total cost should be found.

The direct problem formulation is as follows:

1. Given:

a. the set R = { ri , ri ,... , ri } (each ri is a row in the table)

b. the set C = { c1 , c2 ,..., cn } (each cj is a column in the table)

c. the costs of rows f1 (rj) , j = 1, ... , k

d. the relation of covering columns by rows is COV
[image: image136.wmf]Ì

 R × C.

2. Find

 Set SOL
[image: image137.wmf]Ì

 R
3. Which fulfills the condition:

[image: image138.wmf])]

,

(

[

)(

(

j

i

i

j

c

r

COV

SOL

r

C

c

Î

$

Î

"

 Equation 6.13.1.2
4. And minimizes the cost function

 f2 =
[image: image139.wmf]å

Î

SOL

r

i

i

r

f

)

(

1

 Equation 6.13.1.3

It results from the above formulation that the state-space S = 2R. This means that SOL
[image: image140.wmf]Ì

 R. Hence, it results from the problem formulation that all the subsets of a set are being sought. Then, according to the methodology, the standard generator, called T1, that generates all the subsets of a set is selected. Operation of this generator can be illustrated by a tree.

The previously mentioned relation RE on the set S × S can be found for this problem and used to reduce searching for a respective search method. It can be defined as follows:

 s1 RE s2
[image: image141.wmf]Û

 s2
[image: image142.wmf]É

 s1 Equation 6.13.1.4
Therefore, when a solution is found, a cut-off occurs in the respective branch.

There exists for each element cj
[image: image143.wmf]Î

 C an element ri
[image: image144.wmf]Î

 SOL , such that their relation COV is met. In other words, ri covers cj which means that the predicate COV(ri , cj) is satisfied. The cost function F assigns the cost to each solution. In this case, this means that F = f2 is the total sum of f1(ri)$; the costs of rows ri that are included in set SOL . Thus, using the problem definition from section 6.2, the covering problem is formulated as the problem

 P = (2R , { p1}, f2), Equation 6.13.1.5
where

 p1 (SOL) =
[image: image145.wmf])]

,

(

[

)(

(

j

i

i

j

c

r

COV

SOL

r

C

c

Î

$

Î

"

 Equation 6.13.1.6
In case of classical search this problem was formulated using logic equations, Lists or binary matrices. In case of quantum search the most natural is to have variables corresponding to rows of the table, but it still gives freedom in oracle construction.

6.13.2. Tree Search Method 1
The initial tree search method based on the direct problem formulation is then the following

1. The initial node N0 : (QS, GS, F) := (Ø, R, 0).

2. The descriptors are rows ri . The application of the operator is then specified by the subroutine O(N, ri) =

 [GS(NN) := GS(N) \ { ri }

 QS(NN) := QS(N)
[image: image146.wmf]È

 { ri }

 CF(NN) := CF(N) + f1 (ri)

]

3. Solution Problem and Condition (cut-off type)

 p1(NN) =
[image: image147.wmf])]

,

(

)[

(

)(

(

j

i

i

j

c

r

COV

NN

QS

r

C

c

Î

$

Î

"

 Equation 6.13.2.1
Comments.
1. NN denotes a successor of node N.

2. QS(N) is the set of rows selected as the subset of the solution in node N.

3. F(N) is the cost function for node N. This is the total sum of costs of the selected rows from QS(N).

As we can see in this problem, the formulation of the additive cost function

is possible.
An example of the cover table is shown in Figure 6.13.1. In this example, to simplify calculations, we assumed equal cost of rows. However, the method can be easily extended to arbitrary costs of rows. The solution tree obtained from such a formulation is shown in Figure 6.13.2.
[image: image148.emf]
Figure 6.13.2: First Search Method for the Table from Figure 6.13.1.

This method is the simplest and the most natural for quantum oracles. Remember oracle for graph coloring and SAT. But it is not much knowledge-based and thus expensive. It can be used however in each quantum processor to deal with intelligently decomposed problems.
The nodes of the search tree are in the ovals. The arrows correspond to the applications of operators, and each descriptor of operator stands near the corresponding arrow. The solution nodes are shown in bold ovals. The costs of nodes are outside the ovals, to the right. The sets inside the ovals correspond to partial solutions in the nodes. Since the entire tree has been developed here, the sets GS for each node can be reconstructed as the sets of all descriptors from the outpointing arrows.

The cutting-off uses the fact that the cost function increases monotonically along the branches of the tree; this is the cut-off condition. The nodes that are the solutions are therefore not extended. If the cut-off conditions were not defined, for example, the nodes {1, 2, 3} and {1, 2, 4} would be extended. Otherwise, the tree is produced under the assumption that the cutting-off is not done for the solutions with cost function values worse than for those nodes previously calculated. The values of function f for nodes are shown to the right of these nodes.

Observe that some nodes of the tree are created (for example, node {3}) in a way that does not allow any solutions to be produced in their successor nodes. Because each column must be covered by at least one row in the node, the generation of such nodes can be avoided. This is done by storing the columns cj that are not yet covered in set AS. The branching for all rows ri that cover the respective column for each individual column is also generated. These are such rows ri that COV(ri , cj). We can now formulate a new tree search method

6.13.3. Tree Search Method 2

1. Initial node N0
 (QS, GS, AS, CF) := (Ø, { rk
[image: image149.wmf]Î

 R | COV(rk , c1) }, C, 0) Equation 6.13.3.1
The first element of C is denoted by c1 above.

2. Operator

 O(N, ri) = [

 QS(NN) := QS(N)
[image: image150.wmf]È

 { ri }

 AS(NN) := AS(N) \ { cj \
[image: image151.wmf]Î

 C | COV(ri , cj)}

 cj := the first element of AS(NN)

 GS(NN) := { rk
[image: image152.wmf]Î

 R | COV(rk , cj)}

 CF(NN) := CF(N) + f1 (ri)

]

3. Solution condition (cut-off type)

 p1(NN) = (AS(NN) = Ø) Equation 6.13.3.2
The corresponding tree is shown in Figure 6.13.3.1.

Two disadvantages to this method become apparent from Figure 6.13.3.1. The first disadvantage is creating the redundant descriptor 4 in GS(N5). This descriptor cannot be better than the descriptor 2. This disadvantage can easily be overcome by writing a new code for this section, that would define and use the domination relation on descriptors. The second disadvantage is due to the repeated generation of the solution {1, 3, 4}, the second time as {1, 4, 3}. If the optimal solution is desired, then there is no way to avoid the inefficiency introduced by the Tree Search Method 2.

[image: image153.emf]
Figure 6.13.3.1: Second Search Method for the Table from Figure 6.13.1.
This method is good for a Master Processor that decomposes a problem to smaller problems and sends these smaller problems to Slave Quantum Processor. Assume as an example that at most 4 × 4 matrices, or smaller, can be handled by a quantum processor. Then the initial matrix from Figure 6.13.3.1 can not be handled but each of smaller matrices after initial decomposition can be handled and solved in parallel on 2 quantum processors. Of course, the example is trivial and does not require quantum search, it serves only the concept explanation.

6.13.4. Tree Search Method 3

Another method to avoid generating nodes for which f = ∞ is the application of the first method (the generation of the T1 type of tree) and an additional filtering subroutine to check nodes to verify if the set of rows from GS(N) covers all the columns from AS(N). In addition, the following code of type "Actions on the Selected Node" is created:

If

 AS(N)
[image: image154.wmf])]

,

(

))[

(

)(

{

j

i

i

j

c

r

COV

N

GS

r

C

c

Î

$

Î

Ë

 Equation 6.13.4.1
then

 GS(N) := Ø

 This means, that the cut-off is done by clearing set GS(N) when the set of all the columns covered by the available descriptors from GS(N) does not include the set AS(N) of columns to be covered. For example, at the moment of generation shown by the arrow in Fig. 6.13.2, the set of GS(N0) = {3,4,5} and it does not cover AS(N0) = C. Therefore, it is assigned GS(N0) := Ø, and the generation of the subtree terminates. This forms the Tree Search Method 3.

6.13.5. Tree Search Method 4
The generated tree can be decreased even further when the second method is used and it is declared in the operator that:

 GS(NN) := { rk
[image: image155.wmf]Î

 GS(N) \ { ri } | COV(rk , cj) } Equation 6.13.5.1
Let us recall that symbol \ denotes operation of set difference.

However, this approach can cause losing the optimal solution. It is then a typical heuristic directive and not a methodic directive like those discussed previously. In both trees, the cutting off condition based on the cost function has been not yet considered. If the solution {1, 2, 3} in the tree shown in Figure 6.13.2 were first found, node {2, 3, 4} could be cut off, and the non-optimal solution {2,3,4,5} would not be generated. However, until now, only the methods of constructing the generator of complete and non-redundant trees have been presented. These are the trees calculated for the worst case of certain rules and heuristics that will be discussed in sections 6.13.5 and 6.13.6.

Search Strategies
 Various search strategies can be illustrated using this example, to give the reader an intuitive feeling for the concepts and statements introduced in the previous sections. This has application in classical software and serial pre-processing/decomposition in a hybrid quantum system.
The node enumeration order from Figure 6.13.3.1 corresponds to the Breadth-First strategy, and to the strategy of Equal Costs (with respect to the equal cost of rows applied in this example).

Eight nodes were generated in node N7 to find the optimal solution {1, 3, 2}. The optimality of the solution {5, 4, 2} was proven after creating node N15, which means, after generating 16 nodes. Nodes N7 to N15 were temporary. Cost-related backtracking occurs in node N13 and, therefore, nodes N16 and N17 are not generated.

The strategy Depth-First generates the nodes in the order N0 , N1 , N2 , N5 , N6 , N14 , N15 , N12 , N13 , N3 , N4 , N9 , N10 , N11 , N7 , N8 . After finding N14, i.e., generating six nodes, the optimal solution {5, 4, 1} is found. As in the previous strategy, after generating 16 nodes, the optimality of the solution {1, 3, 4} is determined. We can state - "it is proven", since the method is exhaustive, and we have generated all nodes.

The strategy Depth-First-With-One-Successor, generates the nodes in the order: N0 , N1 , N3 , N7 , N8, N4 , N9 , N10 , N11 , N2 , N5 , N13 , N6 , N14 , N15 . The optimal solution {1, 3, 2} is found after creating four nodes. After generating 16 nodes, the optimality of the solution {5, 4, 2} has been proven. Because the selection of the descriptor depends on the row order among the rows covering the first column, the selection is arbitrary. Hence, in the worst case, the order of generation could be N0 , N2 , N5 , N13 , N16 (the temporary solution {5, 4, 3, 1} of cost 4 has been found), N17 , N12 , N6 , N14 , N15 , N1 , N3 , N7 , N8 , N4 , N9 , N10 , N11. A tree of 18 nodes would be generated to prove the optimality of {1, 4, 5}. This illustrates, that good heuristics are very important to limit the size of the solution tree.

6.13.6. Tree Search Method 5
Subsequent advantages will result from the introduction of the heuristic functions that control the order in which the tree is extended, with regard to the method 2 presented above. The introduction of such functions will not only lead to finding of the optimal solution sooner, but also to expediting the proof of its optimality. This is due to fuller use of the cutting-off property, which results in a search that is less extensive when the optimal solution is found earlier.

The quality function for the operators with regard to the selection of the best descriptors in the branching nodes, as well as the quality function for nodes with regard to the selection of the nodes to be extended is defined below.
Quality function for nodes:

 QF(NN) = CF(NN) + ĥ (NN) Equation 6.13.6.1
where

 ĥ (NN) = CARD(AS(NN)) . CARD(GS(NN)) . K, Equation 6.13.6.2
and

[image: image156.wmf]å

å

Î

Î

Î

Î

=

)

(

2

)

(

1

)})

,

(

|

)

(

{

(

)}

,

(

|

)

(

{

).

(

NN

GS

r

j

i

j

NN

GS

r

j

i

j

i

i

i

c

r

COV

NN

AS

c

CARD

c

r

COV

NN

AS

c

CARD

r

f

K

 Equation 6.13.6.3
Such a defined function ĥ is relatively easy to calculate. As proven in the experiments, it yields an accurate evaluation of the real distance h of node NN from the best solution. It is calculated as an additional coordinate of the node's vector. The function's form is an outcome of the developer trying to take into account the following factors:

1. The nodes Ni are extended for which the fewest columns need to be covered in the AS(Ni). There is a higher probability that the solution is in the subtree D(Ni) at the shallow depths for such nodes. Hence, the component CARD(AS(NN)).

2. The nodes, for which the fewest decisions need to be made, are extended. This is a general directive of tree searching. It is especially useful when there exist strong relations on descriptors, as happens in our problem. Hence, the component CARD(GS(NN)).

3. The coefficient K was selected in such a way that, with respect to the properties of the strategies discussed previously, the function ĥ is as near to h as possible.

The quality function for operators is defined by the formula

 qNN (ri) = c1 f1 (ri) + c2 f2 (ri) + c3 f3 (ri), Equation 6.13.6.4
where c1, c2, c3 are arbitrarily selected weight coefficients of {\em partial heuristic functions} f1, f2, and f3 defined as follows

 f1 has previously been defined as the cost function of rows

 Equation 6.13.6.5
 f2 (ri) = CARD { cj
[image: image157.wmf]Î

 AS(NN) | COV (ri , cj) } Equation 6.13.6.6
 f3 (ri) =
[image: image158.wmf]å

=

Ù

Î

Ù

Ù

Î

n

j

j

e

e

j

i

j

e

i

c

r

COV

NN

GS

r

c

r

COV

NN

AS

c

r

CARD

r

f

1

2

)]

,

(

)

(

)

,

(

)

(

|

[

)

(

1

 Equation 6.13.6.7
where n is number of columns. Function f3(ri) defines the "resultant usefulness factor of the row" ri in node NN. Let us assume that there exist k rows covering some column in the set GS(NN). The value of the usefulness factor of each of these rows with respect to this column equals k. When k = 1, the descriptor is indispensable (or with respect to Boolean minimization, the corresponding prime implicant is essential). The resultant usefulness factor of the row is the arithmetical average of the column usefulness factors with respect to all the columns covered by it. Then, one should add an instruction in the operator subroutine to sort the descriptors in GS(NN) according to the non-increasing values of the quality function for descriptors qNN.

The next way of decreasing the solution tree is by declaring new section code that checks the relations on descriptors. If the descriptors ri and rj are in the domination relation in the node N (such relation is denoted by ri > rj), rj can be removed from GS(N) with the guarantee that at least one optimal solution will be generated. If the descriptors ri and rj are in the global equivalence relation in node N , any one of them can be selected. The other descriptor is removed from GS(N), as well as from GS(M) where M is any node in the sub-tree TREE(N). The equivalence class [r] of some element r from GS(N) is replaced in this coordinate by r itself. Descriptors declared as locally equivalent are treated similarly. The only difference is that the descriptors are then removed from GS(N) only. Observe, that these relations are not based on costs, but on some additional problem-dependent information about the nodes of the tree that is available to the program. The covering problem may be a good example of this property.

The descriptors r1 and r2 are globally equivalent in node NN when they have the same cost and cover the same columns

[image: image159.wmf])]

,

(

)

,

(

))[

(

(

)

(

)

(

2

1

2

1

1

1

2

1

c

r

COV

c

r

COV

NN

AS

r

f

r

f

r

r

=

Î

"

Ù

=

Û

º

 Equation 6.13.6.8
Descriptors (rows) r1 and r2 are locally equivalent in node NN when, after removing one of them from the array, the number of columns covered by j rows is the same for each j = 1,..., CARD(GS(NN)) - 1 as after removing the second one.

[image: image160.wmf])]

,

(

)

,

(

)[

1

))

(

(

,.....,

1

(

2

1

2

1

r

j

LK

r

j

LK

NN

GS

CARD

j

r

r

=

-

=

"

Û

@

 Equation 6.13.6.9
 where LK(j,r) is the number of columns covered by j rows in the array that originates from M(NN) after removing row r.

 LK(j,r) = CARD { ck
[image: image161.wmf]Î

 AS(NN) | CARD(Xk) = j } Equation 6.13.6.10
where Xk is the set of rows covering the column ck

 Xk = { x
[image: image162.wmf]Î

 GS(NN) \ {r} | COV(x, ck) } Equation 6.13.6.11
Descriptor r1 is dominated by descriptor r2 when: (1) it has larger cost than r2, and (2) r1 covers at most the same columns as r2, or when (3) r1 has the same cost as r2, and covers the subset of columns covered by r2,

[image: image163.wmf])]

,

(

)

,

(

))[

(

(

)

(

)

(

2

1

2

1

1

1

2

1

k

k

k

c

r

COV

c

r

COV

NN

AS

c

r

f

r

f

r

r

=

Î

"

Ù

=

Û

£

[image: image164.wmf])}

,

(

|

)

(

{

)

,

(

|

)

(

{

)

(

)

(

2

1

2

1

1

1

k

k

k

k

c

r

COV

NN

AS

c

c

r

COV

NN

AS

c

r

f

r

f

Î

Ì

Î

Ù

=

Ú

 Equation 6.13.6.12
The developer can program all of the relations given above or only some of them. If all the relations have been programmed and parameterized, the user can still select any of their subsets for execution using parameters. The solution process is shown in Figure 6.13.6.1. The decomposition like this is obviously useful in any parallel processing.
[image: image165.emf]
Figure 6.13.6.1: Final Search Method for the Table from Figure 6.13.1.
Column 1 and rows 1 and 5 are selected at the beginning (GS(N0) = {1, 5}). After the selection of row 1 to QS(N1), row 5 becomes dominated by 2 (or 3) and is removed. The domination of descriptor 5 by descriptor 2 is denoted in the Figure 6.13.6.1 by 2D5. Now descriptors 2, 3, 4 are locally equivalent, denoted as LR(2, 3, 4). One of them, say 3, is selected. Descriptors 2 and 4 then become globally equivalent in node N'1, denoted as GR(2,4). One of them, say 2, is selected. This leads to the solution QS(N''1) = {1, 3, 2}.Now the backtracking to the initial node, N0, occurs and descriptor 5 is selected. Next, descriptors 1 and 3 are removed since they are dominated and then descriptors 2 and 4 are selected as indispensable descriptors in node N'2 that is denoted as IN(2, 4) in Figure 6.13.6.1. This produces the solution QS(N'2) = {5, 2, 4}. After backtracking to the initial node GS(N0) = Ø , node N0 is removed from the open-list. The open-list = Ø completing the search of the tree. The last solution of the minimal cost 3 is then proven to be the optimal solution.
[image: image166.emf]
Figure 6.13.6.2: A Covering Table with Costs of Rows that are not Equal.
[image: image167.emf]
Figure 6.13.6.3: A Search Method for the Table from Figure 6.13.6.2.

6.13.7. General Ideas about Covering and Mapping Problems
In section 6.13.6 we showed few of many strategies for the unate covering problem. Similar approaches can be created to binate covering, SAT, even-odd covering and graph-coloring.

Note the following facts

· not all of the minimal solutions were obtained but more than one was produced,

· only node N0 is permanently stored in the tree,

· if the user declared parameter Fmin min = 3, the program would terminate after finding the solution {1, 3, 2}. In some problems, guessing or evaluating the cost of the function is not difficult.

If all of the above relations, except the most expensively tested local descriptor equivalence, were declared, the complete tree consisting of 8 rows and 3 solutions would be obtained.

As illustrated in PPRM, FPRM, GRM and ESOP search examples from chapters 2, 3, 4, 6, 7, 8, 9 and 10 the same properties exist for other problems. In some problems very good results are found using Branch-and-Bound and Ordering as global strategies and MUST0, EQUIV, REAPNT to define the local strategy. EQUIV only checks for the global equivalence of descriptors. The covering table shown in Figure 6.13.6.2 will be solved in this example. The cost of each row is entered next to its respective descriptor. The costs of the rows are now not equal. The tree structured state-space for this problem is shown in Figure 6.13.6.3. The details concerning the node descriptions for this tree are also illustrated in Table from Figure 6.13.6.4. (By pred(N) we denote the predecessor node of node N).

The search starts from node 0 where no column is covered, so set AS consists of all the columns. All rows are available as descriptors. Initial QS is an empty set, since no descriptor has been yet applied. After being processed by EQUIV, it is found that descriptor B is dominated by the another descriptor D. Therefore, descriptor B is deleted from the descriptor list. MUST0 finds that descriptor C is indispensable (with respect to column 7), and it is then immediately applied by GEN to create the new node 1. The descriptor list is then ordered by ORDER using the quality function mentioned above. Assuming the coefficients c1 = 0.5, c2 = 0, and c3 = 1, the costs of descriptors are

 Q(A) = 2 + 4/2 = 4.0, Q(D) = 1.5 + 4/4 = 2.5, Equation 6.13.7.1
 Q(E) = 1 + 3/3 = 2.0, Q(F) = 2 + 4/3 = 3.3. Equation 6.13.7.2
The descriptor list is arranged according to the descriptor costs as {E, D, F, A}. The descriptors are applied according to this sequence.

There is no difference between the application of the descriptors in the sequence of E, D or D, E for the solution in this problem. Therefore, if descriptors E and D have already been applied, it is not necessary to apply them again in another sequence. This is why descriptor E is cancelled for node 3; E and D for node D0 ; as well as E, D and F for node D1. This cancellation is done by REAPNT. The above procedure prevents node D0 from finding the descriptor to cover column 5. Therefore, this node is not in the path to the solution and should be cut off by GENER. This phenomena also happen for nodes D1, D3, and D5. The cost of node D2, which is 13, exceeds the temporary cost B which is the cost of solution node 4 that has already been found. It was, therefore, cut off by the Branch-and-Bound strategy. So was node D4. The whole search procedure in this example deals with 11 nodes but only stores the descriptions of 5 nodes in the memory structure. A total of two optimal solutions were found in the search.
Observe that PPRM, FPRM, SOP, ESOP etc problems are covering problems with various constraints. They are all “subset selection problems”, i.e. they are all formulated like that: “select such subset of a set of all sub-functions of certain kind that some constraints are satisfied and some cost is minimized”. The SAT problem is also a subset selection problem, we have to select some subset of elements
[image: image168.wmf]{

}

n

n

x

x

x

x

x

x

,

.....,

,

,

,

,

2

2

2

1

 that a formula is satisfied SAT (x1, …., xn) = 1.

The mapping problem is to find such mapping X(Y where X and Y are arbitrary sets that some constraints Ri (X, Y) are satisfied and some cost function on X and Y is minimized. Thus the subset selection problem in which Y = {0, 1} with meaning: 0 – not selected, 1 – selected is a special case of the mapping problem. This very powerful metaphor for problem solving helps to have a unified view to many practical CAD and AI/robotics problems that will be illustrated in next chapters with several examples, particularly for problems of interest to quantum CAD.
[image: image169.emf]
Figure 6.13.7.1: Node Descriptions for the Tree from Figure 6.13.6.2.
The methodology presented in this chapter and illustrated with many examples in next chapters explains the characteristic trade-off relationship between the knowledge-based reasoning and the exclusively intrinsic search already mentioned in previous sections. The direct description of the problem allows us to find a solution based strictly on the generation of all possible cases that are not worse than the solutions generated previously (quantum or not). The successive addition of the information in the form of new heuristic directives and methodic directives that are based on the analysis of the problem and the solution process (e.g. quality functions, domination relations, equivalences, Fmin min, etc.) allows for the search to be decreased. Adding a piece of information can decrease search dramatically, which especially important in quantum.
Until now, we have not focused on how the relation COV is represented. This could be an array, a list of pairs (ri, cj), a list of lists of columns covered by rows, a list of lists of rows covering the columns, various oracles, etc. The selection of the representation is independent from the selection of the method and from the strategy, but various combinations of these can have different effects. At some stage in creating the program or oracle, the user decides on the selection of, for example, the binary array and writes the corresponding functions. The user can then work on the representation of the array next: using words, or using bits. The arrays M(N) also do not necessarily need to be stored in nodes as separate data structures, they can be re-created from AS(N) and GS(N). The local strategy parameters should also be matched to the representation. This is related to such factors as the total memory available for the program as well as the average times needed to select the node, to generate the node, to extend the node, to select the descriptor, and to check the solution condition.

Let us analyze one more example of a real-time system based on a parallel quantum computer.

6.14. Real-Time based Parallel Quantum Computer. A Hypothetical Scenario for QSPS
Assume that we want to build a parallel quantum computer that calculates a trajectory for the US defense land-to-air missile from the received in real time data about the approaching enemy missile. US counter missile should be fired in no more than 5 minutes to destroy the enemy missile. Otherwise it would be too late. If we use the optimizing Grover Algorithm on a single quantum computer the time of
[image: image170.wmf])

(

N

O

 may be longer than 5 minutes. So the calculated trajectory of US counter-missile result will be optimal but useless because it would be too late to destroy the enemy missile. Having however a parallel system with several Grover processors we can allow each of them to work with a different oracle and with a different number of Grover Loop iterations, making measurement in each processor after 10 seconds, 20 seconds, etc. Thus in the first 10 seconds we already have some trajectory solutions for the US missile, after 20 seconds we can get a better one for which to reprogram the counter missile, and so on. When the time to shoot comes after 5 minutes, we have already a solution selected among thousands of gradually improved solutions with more and more optimal trajectories. This is definitely practically better than to keep waiting for the forthcoming “optimal solution” while the enemy rocket is threatening to destroy US. In many situations like this an approximate solution available now is better than the exact solution obtained too late.

Several similar scenarios can be invented which demonstrate how to use the trade-off between the time of obtaining a solution on a parallel quantum computer and the quality of this solution. An optimal real-time system should take these trade-offs into account. This is a well-known problem from real-time control but it is applied here in a new way to a parallel quantum computer.

Let us also observe that in practice all problems are “real-time problems” when the computer technology has a flexible scale of providing solutions in time intervals from seconds to tens of years. Quantum technology is the only conceivable technology that will have this property. Let us give an example. Suppose that we want to factorize a big integer (related to the cracking of secret codes) using the Shor algorithm. If we use a standard computer working probabilistically the expectation of a correct guess would be some time longer than our Universe exists. So nobody would even try this approach. On the other hand, there exist integer factorization problems that a Shor Algorithm would solve in few minutes. Increasing these integers as problems given to Shor algorithm would increase the time of Shor algorithms solution times to hours, days, years and finally to the life-span of the human organization (like CIA) that requested this problem to be solved on the quantum computer. The probabilistic way of using Grover algorithm can find or not a solution in say 3 years when the optimal search would require 20 years. This situation may resemble catastrophic movies where some comet approaches the Earth and may crash so we need a supercomputer to find a necessary action to avoid the catastrophe. In case of the Grover Algorithm we would be thus, as a whole humanity, at the mercy of quantum measurements, which means at the mercy of probability. This is unfortunately a realistic situation similar to the metaphoric joke of the half-dead, half-alive cat of Schrödinger [Schrödinger26].

6.15. Variants of Quantum Computing in QSPS.
Standard Grover algorithm should iterate the Grover Loop of
[image: image171.wmf]N

 number of times. There is however another possibility to use Grover, a probabilistic one. Let us take the graph coloring problem as an example. When the graph is very large, K nodes, and there is no any additional information about it, the number of colors should be assumed to be equal to the number of graph’s nodes which gives N = log K • K qubits for input variables. In such case
[image: image172.wmf]N

 is a very big number and the Optimizing Oracle that uses the sorting/absorbing circuit (chapter 13) is both very complex and repeated very many times. In such case a better approach is to build a simpler graph coloring oracle composed only from the decision part – the Decision Oracle (Figure 6.15.1a). This oracle will generate randomly many solutions for each measurement. Running this simple oracle several times produces a solution with small cost (statistically). Next we can design the optimizing oracle with N1 = K • n1 qubits where n1 << logK , thus reducing the time of running the Optimizing Oracle for Grover (Figure 6.15.1b).

Finally instead of using the Optimizing Oracle one can build an oracle for predicted number of colors (we will call it the Predictor Oracle). Suppose that the Decision Oracle for a Maximum Clique Problem found a solution with k1 colors. Then we can design a new oracle with the decision function as in Figure 6.15.1c.

[image: image173.emf]Decision

“ is { n

i1

, n

i2

,…., n

ij

}

a clique?”

n

1

n

2

n

3

n

n

.

.

.

.

.

.

.

.

(a)

[image: image174.emf]Decision if this is a clique?

n

1

n

2

n

3

n

n

.

.

.

.

.

.

.

.

Calculate the

number of ones

.

.

n

1

n

2

n

3

n

n

≤

Expected

value t

r

Is cost ≤ t

r

?

{n

i1

, …, n

ik

} is the solution with

number of elements smaller or

equal the expected value

(b)

[image: image175.emf]Decision

Oracle

Symmetric function

S

k-1

(n

1

, …, n

n

)

n

1

n

1

n

2

n

2

n

k

n

k

.

.

.

.

.

.

Set is a clique

Set has k-1

elements

The solution

has k-1 colors

(c)

Figure 6.15.1: The oracles for the maximum clique problem. (a) the Decision Oracle , (b) the Optimizing Oracle, (c) the Cost-Predicting Oracle.

The given in this sections two examples of the sequence of oracles in Grover for “graph coloring” problem and “maximum clique” illustrate that the Grover algorithm that is normally used as a “decision maker” or “optimizer” can be also used as a “good guesser”, at least for those problems that have many solutions. It can be also done for decision problems if the solution time is very critical, as in section 6.14.

There are many methods to combine the Decision Oracle, the Optimization Oracle and the Predictor Oracle with different number of Grover iterations. They can be all used in a general search system based on master-slave parallel processors, as the QSPS presented in this chapter.
6.16. Heuristic Search versus Quantum Search

Above we discussed various aspects of search and its link to representation – how general are the search ideas, how related to quantum or non-quantum realization?

Observe that every combinatorial problem from our book has two aspects:

1. The concept of certain type of logic circuit type (such as structure, ancilla bits, types of gates, number of levels, etc) and the data structures in the synthesizing program that represent this circuit.

2. The method to search the space of solutions for the given specification of Boolean function and for the assumed type of the circuit.

Several concepts contributed to the search methods presented in this book. The book is based on 20 years of experience of PSU group in optimizing AND/EXOR logic and reversible design as well as on recent papers from other groups. The book takes ideas from many previous papers and reports: on one hand it expands on the optimization methods from [Dill01] and on the other hand on the quantum search paper [Li06] to build a uniform approach to quantum circuit synthesis based on search. This experience was reflected in the circuit types and search strategies for them.

The methodology of our previous software was applicable to traditional computer-automated digital design and synthesis, as well as for off-line Evolvable Hardware, including quantum hardware. The methodology from [Li06] is applicable to any problem described by an oracle. Our new methodology that was presented in this chapter is more general and incorporates the previous approaches as just its special cases.
The Extended Cybernetic (Multi-Strategic Learning) Problem-Solving (ECPS) Algorithm was created based on the authors’ previous experiences with search algorithms. It expands on ideas from [Perkowski78, Perkowski82, Perkowski92, Perkowski99e, Perkowski02, Dill97, Dill97c] implemented in Multicomp and its next variants [Perkowski92, Software1, Software2]. Our new approach aids humans in solving combinational decision and optimization minimization problems. Most fundamentally, a more powerful state-space/evolutionary approach to solution derivation is employed in QSPS, for simplicity, generality and most importantly – to make a general link to quantum computing. When a problem is formulated as a search in some space, then it is next relatively easy to make variants of this search through evolutionary, quantum and probabilistic methods. The problem formulation, the cost function, constraints, heuristics, and other components of the specification are more important than the final representation of the search in one or another software, hardware or even type of computing (classical versus quantum, sequential versus parallel).

Our fundamental philosophy starts from the assumption that any combinatorial logic problem (or constraints satisfaction problem) can be solved by searching some space of known states (for instance, these states are the circuit structure instances being optimized). Solutions in this approach are achieved with an intelligent strategy using both human-designed heuristics and state-space search mechanisms [Nilsson98, Lugar02]. Our method includes evolutionary ideas but they are different from previous Darwinian and Lamarckian learning approaches implemented in our group by Karen Dill, Martin Lukac, Normen Giesecke, Mozammel Khan and others. This is also in contrast to conventional evolutionary methods, that most often do not use the concepts of “search in state space”. One of our innovations is that of the two-level search which is based on the concept of polarity of spectral expansion of a Boolean Function. The upper level of the search performs the global exploration in the space of polarities, while the lower-level local search searches the best circuits for the given polarity. This lower level search can use any other method including evolutionary, A* search or simulated annealing. Therefore our approach from this chapter can be categorized as a memetic algorithm. The quantum search is presented in the general framework of sequential/parallel search as a sequence of exhaustive searches in reconfigurable systems with quantum Grover Algorithm based accelerators.
It is well-known that in the field of logic synthesis the researchers have several decades of experience producing useful human-designed software systems based on decision functions, butterflies and search, which we inherit to be used for the quantum CAD methodologies developed here. Thus, the search methods expertise must be combined with known quantum search algorithms, to make further progress, rather than to “re-invent the wheel”.

The previous experience of the PSU group with genetic methods [Dill97, Dill97a, Dill98, Perkowski99e] has shown that the evolutionary approach has both practical solution time, quality of solution, and problem size limitations. For larger problems this approach creates only quasi-minimal solutions. It has just no means to achieve 100% convergence and the exact minimum of the cost function. Although the Genetic Algorithm (GA) and Genetic Program (GP) have the ability to adapt well to a particular function, they produce no explanation of design methodology and no rules of generalization for solving other problems. The GA/GP software does not learn a problem-solving strategy. Neither does it learn a general method for approaching a class of problems. For example, as the GA is applied to logic minimization [Dill97, Dill97a, Dill98], after finding a good solution to one Boolean function, it approaches the next Boolean function to be minimized with no general learned knowledge. The same circumstance is also found in the application of the GP to logic synthesis [Dill97, Dill01]. On the other hand, the research on functional decomposition (Ashenhurst/Curtis decomposition and bi-decomposition) in the PSU [Files97, Files98, Files98a, Perkowski05], while creating good solutions, is not easily tunable to reversible and quantum technologies (at least we were not able to find a solution). Traditional exhaustive search mechanisms (breadth first, depth first, branch-and-bound, etc.) guarantee an optimal solution from the solution space, but are (often) prohibitively time consuming [Lukac04, Giesecke06]. Thus, both complete (searching the entire state-space) and incomplete (evolutionary and rule-based) search strategies may be unsatisfactory for producing a general problem solving technique for practical applications.

In contrast, the ECPS algorithm incorporates both pure and heuristic search strategies, and problem solving/learning paradigms, into a synergistic system. All learning methods are combined to form an intelligent, superset, “toolbox” of solution search space methodologies. This algorithm builds on the strengths of different search methodologies. First, within this new problem-solving algorithm, the problem-class-specific search strategies for logic minimization are built, for which the type and number of rules are selected. Then, within this training phase, a solution “pattern” (describing the search methods) is automatically designed for a problem class. This is done from analysis of the network, time available, stage of the design process, and limited user input. After the meta-algorithm has developed the solution pattern for a class of problems, any problem within this class may be applied.
Concluding, here is the main philosophy related to search and developed in this book:

1. A realistic quantum implementation technology has been selected and briefly presented (NMR) for which our circuits will be optimized on four levels: pulses, permutative gates, circuits and oracles (blocks, systems). The methods above the first level apply also to any type of reversible circuit realization (as illustrated in section 2.3 on cellular automata). Therefore, our circuit synthesis methods are very general and can be possibly applied for many new (reversible) technologies in addition to quantum. To the circuits on all levels and in all technology variants we can use the same universal search methods, which are however tuned to each of the problems by the problem-specific cost functions.
2. Powerful logic algebras have been generalized and invented to synthesize circuits optimized for the realistic cost functions. They combine the properties of linear independence, linear/affine decomposition, and the Reed-Muller logic hierarchy. Although these methods can be applied to non-reversible logic as well, they are especially good for quantum realization since they are based on the assumption that NOT and CNOT gates are inexpensive with respect to multi-input Toffoli gates, which assumption was shown in Chapter 2 to be good for known quantum logic (NMR). (It may be not necessarily true for future quantum technologies, other reversible technologies (optical, CMOS adiabatic) and especially for standard VLSI where EXOR operator is not that cheap comparing to AND operator). Uniformity of these concepts allows to create uniform search algorithms for all of them.
3. The usefulness of these new invented by us approaches will be illustrated on several practical circuits realized for the selected NMR technology model. The cost differences for some types of functions are already quite high on small examples that we tested.
4. A number of synthesis methods and techniques are invented and realized. Not just one method.
5. Further, an analogy and extension of the entire sub-area of AND/EXOR logic is made to the Affine generalizations of the AND/EXOR circuits. Thus the Zhegalkin Hierarchy is extended.
6. A new type of meta-algorithm for search on classical computer was ultimately invented. This is referred to as the Enhanced Cybernetic (Multi-Strategic Learning) Problem-Solver (ECPS) Algorithm. Our software is compared to those of other authors.
7. The quantum oracles are shown for several combinatorial problems of CAD and used for synthesis of classical and quantum circuits. This leads to a systematic general development methodology that uses Grover algorithm to accelerate CAD algorithms. Based on these ideas the QSPS quantum problem-solver was proposed and simulated. Its practical power cannot be evaluated since quantum computers are now available for toy problems only. This approach can be also used for several constraint satisfaction problems in robotics.
PAGE
349

_1215428952.unknown

_1215592282.unknown

_1254224780.vsd
C

C

A

A

C

A

A

A

B

C

A

B

C

A

A

A

B

B

B

A

A

A

A

C

C

B

C

A

A

B

C

B

B

C

A

B

C

A

B

C

Solution

A

B

A

C

B

A

B

B

B

C

C

A

C

B

_1258631013.vsd
e1

e2

e3

s1

s2

s3

m1

m2

_1258830048.unknown

_1261345800.unknown

_1287384056.vsd
Hardware re-programming of slave processor structures and parameters

Hardware programming of slave processor structures

Slave quantum processor

Synthesis and decomposition of the problem

Dynamic
“Master” processor

Slave quantum processor

Slave quantum processor

Slave quantum processor

….

….

.

.

results

Main Classical Processor

Problem Specification

Quantum Computer

Decomposed task

Partial answers

loading

loading

Dynamic allocation and scheduling

Static synthesis, decomposition, allocation and hardware programming

_1261507312.vsd
Decision if this is a clique?

n1

n2

n3

nn

.
.
.
.

.
.
.
.

Calculate the number of ones

.
.

n1

n2

n3

nn

≤

Expected value tr

Is cost ≤ tr?

{ni1, …, nik} is the solution with number of elements smaller or equal the expected value

_1285841674.unknown

_1261345814.unknown

_1258830264.unknown

_1259679040.unknown

_1261165224.vsd
Decision
“ is { ni1, ni2,…., nij}
a clique?”

n1

n2

n3

nn

.
.
.
.

.
.
.
.

_1261166830.vsd
Decision
Oracle

Symmetric function
Sk-1 (n1, …, nn)

n1

n1

n2

n2

nk

nk

.
.
.

.
.
.

Set is a clique

Set has k-1 elements

The solution has k-1 colors

_1258830445.vsd
cd

0

1

00

01

11

10

00

01

11

10

0

1

-

-

-

1

-

0

-

-

-

-

f (a, b, c, d)

folding for b

Final cost: four 2 × 2 gates

f (a, b, c, d)

ab

1

ab

cd

0

1

00

01

11

10

00

01

11

10

0

-

1

-

-

-

0

-

-

1

1

-

0

1

a

folding for a

0

0

0

1

-

1

0

1

-

0

1

b

f1 (b, c, d)

0

0

1

-

f1 (b, c, d)

1

1

0

-

0

1

b

f2 (c, d)

b

0

1

0

1

cd

00

01

11

10

f3 (d)

1

d

0

0

0

1

1

0

cd

00

01

11

10

f2 (c, d)

1

Solution

= FUN 1 (a, b, c, d)

_1258830185.vsd
cd

1

1

00

01

11

10

00

01

11

10

1

1

1

-

1

1

1

-

-

g (a, b, c, d)

ab

ab

cd

1

1

00

01

11

10

00

01

11

10

0

0

1

1

1

-

0

0

0

0

1

-

1

-

a

h does not depend on a

0

0

0

0

0

h = g(a, b, c, d) a

(a)

(b)

_1258828570.vsd
ab

cd

-

-

00

01

11

10

00

01

11

10

1

-

1

0

-

1

1

-

-

-

0

-

-

0

f

ab

cd

-

-

00

01

11

10

00

01

11

10

0

-

0

0

-

1

0

-

-

-

1

-

-

0

f (1)

ab

cd

-

-

00

01

11

10

00

01

11

10

0

-

0

0

-

0

0

-

-

-

0

-

-

0

f (2)

ab(2/0)

Solution c ab

c (3/1)

_1258829014.vsd
cd

0

1

00

01

11

10

00

01

11

10

0

-

1

-

-

-

1

-

-

-

0

-

1

-

(2/1)

d (4/2)

ab

ab

cd

1

0

00

01

11

10

00

01

11

10

0

-

1

-

-

-

1

-

-

0

0

-

0

-

b (2/1)

ab

cd

0

0

00

01

11

10

00

01

11

10

1

-

0

-

-

-

0

-

-

-

1

-

0

-

Cut-off as the literal cost plus expected cost exceeds the literal cost of solution Fun 8

ab

cd

0

0

00

01

11

10

00

01

11

10

0

-

0

-

-

-

0

-

-

0

1

-

0

-

Literal cost = 1

Literal
 cost = 1

ab

cd

0

0

00

01

11

10

00

01

11

10

0

-

0

-

-

-

0

-

-

0

0

-

0

-

Literal
 cost = 4

ab

cd

0

1

00

01

11

10

00

01

11

10

0

-

0

-

-

-

1

-

-

-

1

-

0

-

ab

cd

0

1

00

01

11

10

00

01

11

10

0

-

0

-

-

-

0

-

-

0

0

-

1

-

ab

cd

0

1

00

01

11

10

00

01

11

10

0

-

0

-

-

-

0

-

-

1

0

-

0

-

Fun 1

Fun 2

Fun 4

Fun 3

Fun 7

Fun 5

Fun 9

ab

cd

0

0

00

01

11

10

00

01

11

10

0

-

0

-

-

-

0

-

-

-

0

-

0

-

Fun 6

Fun 8

Solution

ad (2/1)

ac (2/1)

abc (1/0)

Solution

Final cost: seven 2 × 2 gates

Final cost: seven 2 × 2 gates

Literal
 cost = 3

Literal
 cost = 1

Literal cost = 1

Literal
 cost = 7

Literal
 cost = 5

Literal
 cost = 3

_1258824029.unknown

_1258622769.unknown

_1258627726.unknown

_1258628379.vsd
Master

Slave Processor 1

Slave Processor 2

Quantum co- processor 1

Quantum co- processor 2

_1258628915.unknown

_1258630097.unknown

_1258627827.unknown

_1258622839.vsd
Exhaustive quantum search in the space of 2n groups for f

group
g0000 = 1
(4/3)

group
g0011 = cd
(3/1)

group
g0010 = c
(3/1)

group
g1111
(0/1)

Best group found

Function f(1) = f c

...

group ab

Solution f = c ab

function f

...

Exhaustive quantum search in the space of 2n groups for f(1)

...

...

...

One-to-zero ratio for group g1111 = abcd

_1258314424.unknown

_1258314457.unknown

_1258315177.unknown

_1258315210.unknown

_1258475122.unknown

_1258314478.unknown

_1258314435.unknown

_1258307424.vsd
ab

cd

4/3

3/3

00

01

11

10

00

01

11

10

3/1

3/1

1/1

1/2

2/2

1/1

1/1

0/1

1/1

1/1

0/1

1/1

0/1

1/2

Positive Polarity
 Exor Map

ab

cd

-

-

00

01

11

10

00

01

11

10

1

-

1

0

-

1

1

-

-

-

0

-

-

0

f

Select

#”1"/#0

_1258314397.unknown

_1256593757.vsd
A

C

A

B

B

C

A

B

C

A

C

B

A

A

C

A

A

B

C

A

C

C

C

B

C

A

B

A

B

B

A

B

C

B

C

B

AàC

CàB

BàC

CàA

Solution

Initial Population of parents

Children

Next generation mutated

Crossovers

Mutations

_1215676306.unknown

_1215682254.unknown

_1215880512.unknown

_1215882310.unknown

_1215884022.unknown

_1215887107.unknown

_1215887163.unknown

_1215884350.unknown

_1215883680.unknown

_1215882147.unknown

_1215685373.unknown

_1215687008.unknown

_1215683688.unknown

_1215682328.unknown

_1215683470.unknown

_1215676830.unknown

_1215676882.unknown

_1215676566.unknown

_1215662655.unknown

_1215675203.unknown

_1215676059.unknown

_1215675166.unknown

_1215601228.unknown

_1215602101.unknown

_1215592684.unknown

_1215465257.unknown

_1215467482.unknown

_1215505407.unknown

_1215545867.unknown

_1215547930.unknown

_1215547663.unknown

_1215547717.unknown

_1215545913.unknown

_1215545065.unknown

_1215467706.unknown

_1215467765.unknown

_1215467524.unknown

_1215466619.unknown

_1215467271.unknown

_1215467330.unknown

_1215466948.unknown

_1215466407.unknown

_1215466481.unknown

_1215465689.unknown

_1215459923.unknown

_1215465020.unknown

_1215465125.unknown

_1215465204.unknown

_1215460344.unknown

_1215460259.unknown

_1215458906.unknown

_1215459667.unknown

_1215459887.unknown

_1215458970.unknown

_1215451392.unknown

_1215451529.unknown

_1215451233.unknown

_1215354933.unknown

_1215356161.unknown

_1215359363.unknown

_1215428754.unknown

_1215428847.unknown

_1215428646.unknown

_1215356576.unknown

_1215359257.unknown

_1215356328.unknown

_1215355979.unknown

_1215356085.unknown

_1215355666.unknown

_1215355775.unknown

_1215355239.unknown

_1215353028.unknown

_1215354027.unknown

_1215354529.unknown

_1215354573.unknown

_1215354465.unknown

_1215353622.unknown

_1215353331.unknown

_1215353374.unknown

_1215293641.unknown

_1215352427.unknown

_1215352503.unknown

_1215352325.unknown

_1215290709.unknown

_1215290730.unknown

_1215290682.unknown

