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Introduction

The Bloch sphere is a geometric representation of qubit states as
points on the surface of a unit sphere.

Many operations on single qubits that are commonly used in
quantum information processing can be neatly described within the
Bloch sphere picture.
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Definition of the Bloch sphere

It turns out that an arbitrary single qubit state can be written:

|ψ〉 = eiγ

(
cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉

)

where θ, φ and γ are real numbers. The numbers 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π define a point on a unit three-dimensional sphere. This is
the Bloch sphere. Qubit states with arbitrary values of γ are all
represented by the same point on the Bloch sphere because the factor
of eiγ has no observable effects, and we can therefore effectively write:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
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The Bloch Sphere
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Derivation of the Bloch Sphere

The Bloch Sphere is is a generalisation of the representation of a
complex number z with |z|2 = 1 as a point on the unit circle in the
complex plane.

If z = x+ iy, where x and y are real, then:

|z|2 = z∗z

= (x− iy)(x+ iy)

= x2 + y2

and x2 + y2 = 1 is the equation of a circle of radius one, centered on
the origin.
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The Unit Circle
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Polar Coordinates

QIA Meeting, TechGate 8 Ian Glendinning / February 16, 2005



VCPC
EUROPEAN CENTRE FOR PARALLEL COMPUTING AT VIENNA'

&

$

%

Polar Coordinates

For arbitrary z = x+ iy we can write x = r cos θ, y = r sin θ, so

z = r(cos θ + i sin θ)

and using Euler’s identity:

eiθ = cos θ + i sin θ

we have
z = reiθ

and the unit circle (r = 1) can be written in the compact form:

z = eiθ

Notice that the constraint |z|2 = 1 has left just one degree of freedom.
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Qubit States

A general qubit state can be written

|ψ〉 = α|0〉+ β|1〉

with complex numbers α and β, and the normalization constraint
〈ψ|ψ〉 = 1 requires that:

|α|2 + |β|2 = 1

We can express the state in polar coordinates as:

|ψ〉 = rαe
iφα |0〉+ rβe

iφβ |1〉

with four real parameters rα, φα, rβ and φβ .
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Global Phase Invariance

However, the only measurable quantities are the probabilities |α|2
and |β|2, so multiplying the state by an arbitrary factor eiγ (a global
phase) has no observable consequences, because:

|eiγα|2 = (eiγα)∗(eiγα) = (e−iγα∗)(eiγα) = α∗α = |α|2

and similarly for |β|2. So, we are free to multiply our state by e−iφα ,
giving:

|ψ′〉 = rα|0〉+ rβe
i(φβ−φα)|1〉 = rα|0〉+ rβe

iφ|1〉

which now has only three real parameters, rα, rβ , and φ = φβ − φα.
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The Normalization Constraint

In addition we have the normalization constraint 〈ψ′|ψ′〉 = 1

Switching back to cartesian representation for the coefficient of |1〉

|ψ′〉 = rα|0〉+ rβe
iφ|1〉 = rα|0〉+ (x+ iy)|1〉

and the normalization constraint is:

|rα|2 + |x+ iy|2 = rα
2 + (x+ iy)∗(x+ iy)

= rα
2 + (x− iy)(x+ iy)

= rα
2 + x2 + y2 = 1

which is the equation of a unit sphere in real 3D space with cartesian
coordinates (x, y, rα)!
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Spherical Polar Coordinates
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Spherical Polar Coordinates

Cartesian coordinates are related to polar coordinates by:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

so renaming rα to z, and remembering that r = 1, we can write:

|ψ′〉 = z|0〉+ (x+ iy)|1〉
= cos θ|0〉+ sin θ(cosφ+ i sinφ)|1〉
= cos θ|0〉+ eiφ sin θ|1〉

Now we have just two parameters defining points on a unit sphere.
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Half Angles

But this is still not the Bloch sphere. What about the half angles?
Let

|ψ〉 = cos θ′|0〉+ eiφ sin θ′|1〉
and notice that θ′ = 0 ⇒ |ψ〉 = |0〉 and θ′ = π

2 ⇒ |ψ〉 = eiφ|1〉
which suggests that 0 ≤ θ′ ≤ π

2 may generate all points on the Bloch
sphere.
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Half Angles

Consider a state |ψ′〉 corresponding to the opposite point on the
sphere, which has polar coordinates (1, π − θ′, φ+ π)

|ψ′〉 = cos(π − θ′)|0〉+ ei(φ+π) sin(π − θ′)|1〉
= − cos(θ′)|0〉+ eiφeiπ sin(θ′)|1〉
= − cos(θ′)|0〉 − eiφ sin(θ′)|1〉

|ψ′〉 = −|ψ〉

So it is only necessary to consider the upper hemisphere 0 ≤ θ′ ≤ π
2 ,

as opposite points in the lower hemisphere differ only by a phase
factor of −1 and so are equivalent in the Bloch sphere representation.
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The Bloch Sphere

We can map points on the upper hemisphere onto points on a sphere
by defining

θ = 2θ′ ⇒ θ′ =
θ

2

and we now have

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π are the coordinates of points on the
Bloch sphere.
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The Bloch Sphere

• Notice that θ = 2θ′ is a one-to-one mapping except at θ′ = π
2 ,

where all the points on the θ′ ‘equator’ are mapped to the single
point θ = π, the ‘south pole’ on the Bloch sphere

• This is okay, since at the south pole |ψ〉 = eiφ|1〉 and φ is a global
phase with no significance. (Longitude is meaningless at a pole!)

• Rotations in a 2D complex vector space contain a double
representation of rotations in 3D real space

• Formally, there is a 2 to 1 homomorphism of SU(2) on SO(3)

• Notice also that as we cross the θ′-equator going south, we
effectively start going north again on the other side of the Bloch
sphere, because opposite points are equivalent on the θ′ sphere.
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Properties of the Bloch Sphere

• Orthogonality of Opposite Points

• Rotations on the Bloch Sphere
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Orthogonality of Opposite Points

Consider a general qubit state |ψ〉

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉

and |χ〉 corresponding to the opposite point on the Bloch sphere

|χ〉 = cos
(
π − θ

2

)
|0〉+ ei(φ+π) sin

(
π − θ

2

)
|1〉

= cos
(
π − θ

2

)
|0〉 − eiφ sin

(
π − θ

2

)
|1〉

So

〈χ|ψ〉 = cos
(
θ

2

)
cos

(
π − θ

2

)
− sin

(
θ

2

)
sin

(
π − θ

2

)
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Orthogonality of Opposite Points

〈χ|ψ〉 = cos
(
θ

2

)
cos

(
π − θ

2

)
− sin

(
θ

2

)
sin

(
π − θ

2

)

But cos(a+ b) = cos a cos b− sin a sin b, so

〈χ|ψ〉 = cos
π

2
= 0

and opposite points correspond to orthogonal qubit states.

Note that in the coordinate system we used in the derivation of the
Bloch sphere, with θ′ = θ/2, the two points are also orthogonal - 90◦

apart.
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Rotations on the Bloch Sphere

The Pauli X, Y and Z matrices are so-called because when they are
exponentiated, they give rise to the rotation operators, which rotate
the Bloch vector (sin θ cosφ, sin θ sinφ, cos θ) about the x̂, ŷ and ẑ
axes:

Rx(θ) ≡ e−iθX/2

Ry(θ) ≡ e−iθY/2

Rz(θ) ≡ e−iθZ/2

In order to evaluate these exponentials, let’s take a look at operator
functions.
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Operator Functions

If A is a normal operator (A†A = AA†) with spectral decomposition
A =

∑
a a|a〉〈a| then we can define

f(A) ≡
∑

a

f(a)|a〉〈a|

It is possible to use this approach to evaluate the exponentials of the
Pauli matrices, but it turns out to be simpler to use the equivalent
power series definition of an operator function. If f(x) has a power
series expansion f(x) =

∑∞
i=0 cix

n then we have

f(A) ≡ c0I + c1A+ c2A
2 + c3A

3 + · · ·
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Operator Exponential

For the case of the exponential function, we therefore have

eA = I +A+
A2

2!
+
A3

3!
+
A4

4!
+
A5

5!
+ · · ·

Now, consider eiθA

eiθA = I + iθA− (θA)2

2!
− i

(θA)3

3!
+

(θA)4

4!
+ i

(θA)5

5!
+ · · ·

and in the special case that A2 = I

eiθA = I + iθA− θ2I

2!
− i

θ3A

3!
+
θ4I

4!
+ i

θ5A

5!
+ · · ·
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Operator Exponential

eiθA = I + iθA− θ2I

2!
− i

θ3A

3!
+
θ4I

4!
+ i

θ5A

5!
+ · · ·

=
(

1− θ2

2!
+
θ4

4!
+ · · ·

)
I + i

(
θ − θ3

3!
+
θ5

5!
+ · · ·

)
A

eiθA = cos(θ)I + i sin(θ)A

Now, the Pauli matrices have the property that X2 = Y 2 = Z2 = I,
so we can use this equation to evaluate the rotation operators.
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The Rotation Operators

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =


 cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2




Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =


 cos θ

2 − sin θ
2

sin θ
2 cos θ

2




Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =


 e−iθ/2 0

0 eiθ/2
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An Example Rotation

Consider:

Rx(π) =


 cos π

2 −i sin π
2

−i sin π
2 cos π

2


 =


 0 −i
−i 0


 = −iX

Which is equal to X up to the global phase of −i, so we see that the
X operator is equivalent to a rotation of 180◦ about the X axis.

We also see that the rotation operators do not in general keep the
coefficient of the |0〉 component of the qubit state real.

To compare rotated states to see if they correspond to the same point
on the Bloch sphere, it is necessary to multiply each one by a phase
to make the |0〉 component of its state real.
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Another Example

Now consider

Rz(α)|ψ〉 =


 e−iα/2 0

0 eiα/2





 cos θ

2

eiφ sin θ
2


 =


 e−iα/2 cos θ

2

eiα/2eiφ sin θ
2




In order to make the coefficient of |0〉 real, we have to multiply this
state by a phase eiα/2, giving

eiα/2


 e−iα/2 cos θ

2

eiα/2eiφ sin θ
2


 =


 cos θ

2

eiαeiφ sin θ
2




so the net effect is to change φ to φ+ α, as you would expect for a
rotation around the ẑ axis.

QIA Meeting, TechGate 28 Ian Glendinning / February 16, 2005



VCPC
EUROPEAN CENTRE FOR PARALLEL COMPUTING AT VIENNA'

&

$

%

Rotation About an Arbitrary Axis

If n̂ = (nx, ny, nz) is a real unit vector in three dimensions, then it
can be shown that the operator Rn̂(θ) rotates the Bloch vector by an
angle θ about the n̂ axis, where

Rn̂(θ) ≡ exp(−iθn̂ · ~σ/2)

and ~σ denotes the three component vector (X,Y, Z) of Pauli
matrices. Furthermore, it is not hard to show that (n̂ · ~σ)2 = I, and
therefore we can use the special case operator exponential and write

Rn̂(θ) = cos
(
θ

2

)
I − i sin

(
θ

2

)
n̂ · ~σ

= cos
(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ)
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Arbitrary Unitary Operator

It can be shown that an arbitrary single qubit unitary operator can
be written in the form

U = exp(iα)Rn̂(θ)

For some real numbers α and θ and a real three-dimensional unit
vector n̂. For example, consider α = π/2, θ = π, and n̂ = ( 1√

2
, 0, 1√

2
)

U = exp(iπ/2)
[
cos

(π
2

)
I − i sin

(π
2

) 1√
2
(X + Z)

]

=
1√
2


 1 1

1 −1




which is the Hadamard gate H.
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Rotations and Phase

The double representation of rotations in 3D space has the interesting
consequence that rotations of 360◦ do not restore the phase to its
initial value, and a rotation through 720◦ is needed. For example:

Rz(0) = I

Rz(2π) = −I
Rz(4π) = I (1)

For an isolated qubit this has no physical significance, but in relation
to other qubits there is a difference
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Orientation-Entanglement Relation

• e.g. a rotation of 360◦ of an electron about its ‘spin’ axis changes
its state - a 720◦ rotation is needed to restore it

• What’s more, this kind of phenomenon is not restricted to the
world of quantum mechanics

• It affects the ‘orientation-entanglement relation’ of objects in
everyday 3D real space

• And I have a demo!
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Future Topics

• Proof that Rn̂(θ) rotates the Bloch vector by an angle θ about
the n̂ axis

• Generalisation of the Bloch sphere to mixed states

• Generalizations to more qubits
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