SCHEDULING © Giovanni De Micheli Stanford University

Outline

- The scheduling problem.
- Scheduling without constraints.
- Scheduling under timing constraints.
 Relative scheduling.
- Scheduling under resource constraints.
 The ILP model (Integer Linear Programming).
 - Heuristic methods (graph coloring, etc).

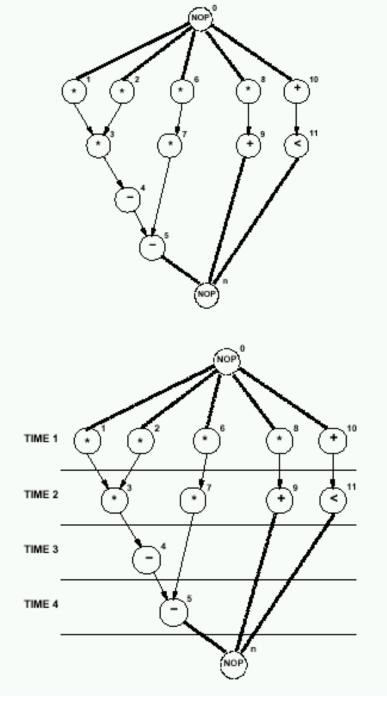
Timing constraints versus *resource constraints*

- Circuit model:
 - Sequencing graph.
 - Cycle-time is given.
 - Operation delays expressed in cycles.
- Scheduling:
 - Determine the <u>start times</u> for the operations.
 - <u>Satisfying</u> all the sequencing (timing and resource)
 <u>constraints.</u>
 - Goal:
 - Determine *area/latency* trade-off.

Do you remember what is latency?

Example

This is As Soon as Possible Scheduling (ASAP). It can be used as a bound in other methods like ILP or when latency only is important, not area.



Taxonomy

- Unconstrained scheduling.
- Scheduling with timing constraints:
 - Latency.
 - Detailed timing constraints.
- Scheduling with resource constraints.
- Related problems:
 - <u>Chaining</u>. What is chaining?
 - <u>Synchronization</u>. What is synchronization?
 - <u>Pipeline</u> scheduling.

Simplest model

- All operations have bounded delays.
- All delays are expressed in numbers of cycles of a single one-phase clock.
 - Cycle-time is given.
- No constraints no bounds on area.
- <u>Goal:</u>
 - Minimize latency.

Minimum-latency unconstrained scheduling problem

- Given a set of operations V with set of corresponding integer delays D and a partial order on the operations E:
- Find an <u>integer labeling</u> of the <u>operations</u>

 $\phi: V \rightarrow Z^+$, such that:

- $t_i = \phi(v_i),$
- $\quad \mathbf{t}_{i} \geq \mathbf{t}_{j} + \mathbf{d}_{j} \forall i, j \text{ such that } (v_{j}, v_{i}) \in E$
- and $\mathbf{t_n}$ is *minimum*.

t_j t_i $(\mathbf{v}_i, \mathbf{v}_i)$ **Input to** d_i must be stable

 $\mathbf{t}_{\mathbf{i}} \ge \mathbf{t}_{\mathbf{j}} + \mathbf{d}_{\mathbf{j}}$

ASAP scheduling algorithm

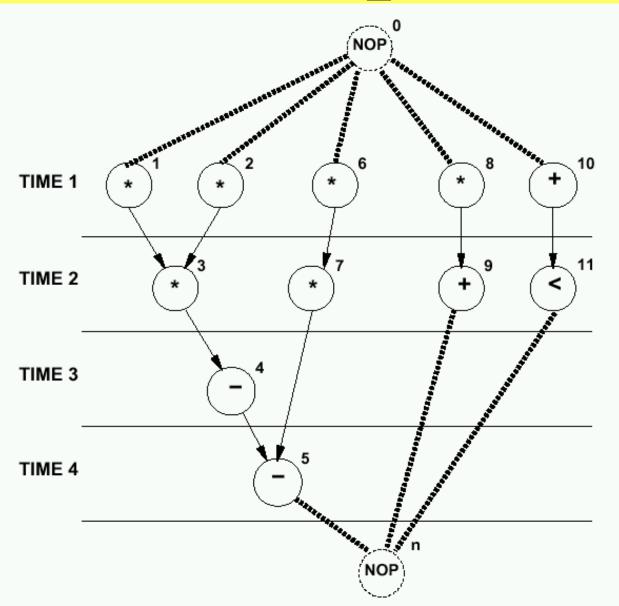
- ASAP ($G_s(V, E)$){
- Schedule v_0 by setting $t_0 = 1$;

repeat {

Select a vertex $\mathbf{v_i}$ whose predecessors are all scheduled; Schedule $\mathbf{v_i}$ by setting t^S $_i = \max_{j:(v_j,v_i) \in E} t^S _j + d_j$; $_j:(v_j,v_i) \in E$ until (v_n is scheduled); return (t^S);

Similar to breadth-first search

Example - ASAP



- Solution
- Multipliers = 4
- ALUs = 2

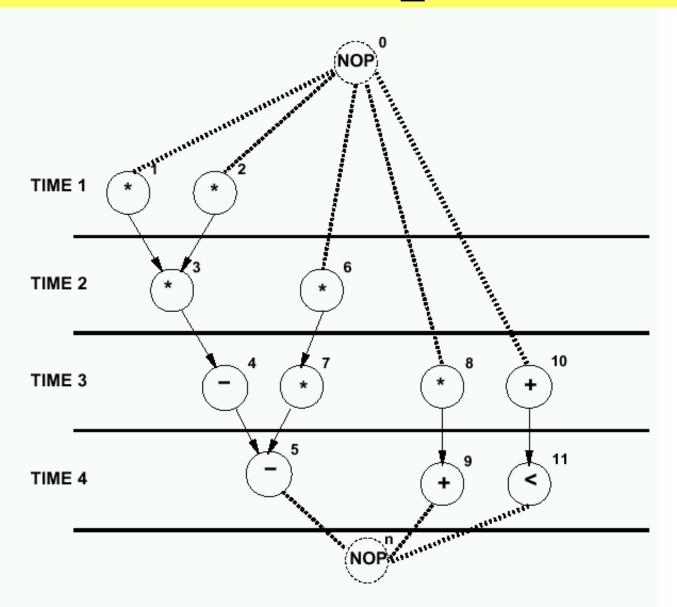
Latency Time=4

ALAP scheduling algorithm

```
ALAP( G_s(V, E), \overline{\lambda}) {
Schedule v_n by setting t_n^L = \overline{\lambda} + 1;
repeat {
Select vertex v_i whose succ. are all scheduled;
Schedule v_i by setting t_i^L = \min_{j:(v_i,v_j)\in E} t_j^L - d_i;
}
until (v_0 is scheduled) ;
return (\mathbf{t}^L);
```

- As Late as Possible ALAP
- Similar to depth-first search

Example ALAP



- Solution
- multipliers = 2
- ALUs = 3

Latency Time=4

- ALAP solves a latency-constrained problem.
- Latency bound can be set to latency computed by ASAP algorithm. <-- using bounds, also in other approaches
- Mobility:
 - Mobility is defined for each operation.
 - Difference between ALAP and ASAP schedule.
- What is **mobility?number of cycles that I can move upwards or downwards the operation**
- Slack on the start time.

- Operations with zero mobility:
 - $\{v_1, v_2, v_3, v_4, v_5\}.$
 - They are on the critical path.
- Operations with mobility one:

 $- \{v_6, v_7\}.$

Operations with mobility two:

$$- \{v_8, v_9, v_{10}, v_{11}\}.$$

Start from ALAP
 Use mobility to
 improve

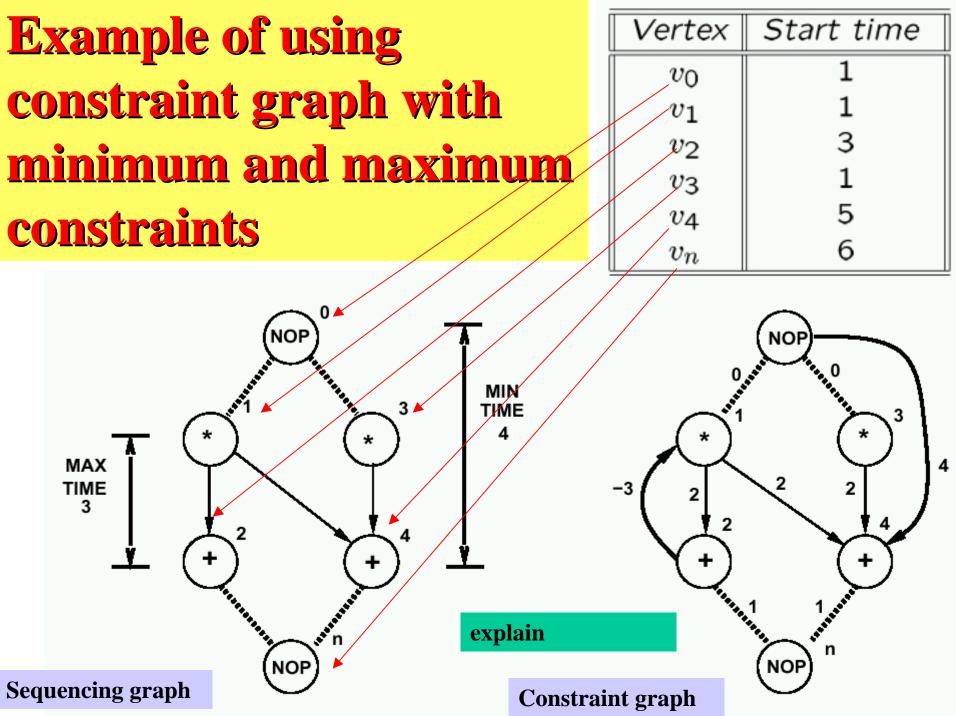
Example of using mobility

Scheduling under <u>detailed timing</u> constraints

- Motivation:
 - Interface design.
 - Control over <u>operation start time</u>.
- Constraints:
 - Upper/lower bounds on <u>start-time difference</u> of any operation pair.
- Feasibility of a solution.

Constraint graph model

- Start from a <u>sequencing graph.</u>
- Model delays as weights on edges.
- Add forward edges for *minimum* constraints.
 - Edge (v_i, v_j) with weight $\mathbf{l}_{ij} => \mathbf{t}_j \ge \mathbf{t}_i + \mathbf{l}_{ij}$.
- Add backward edges for <u>maximum constraints</u>.
 Edge (v_i, v_j) with weight:
 - - $\mathbf{u}_{ij} \Rightarrow \mathbf{t}_j \leq \mathbf{t}_i + \mathbf{u}_{ij}$
 - because $\mathbf{t}_j \leq \mathbf{t}_i + \mathbf{u}_{ij} => \mathbf{t}_i \geq \mathbf{t}_j \mathbf{u}_{ij}$



Methods for scheduling under <u>detailed timing</u> constraints

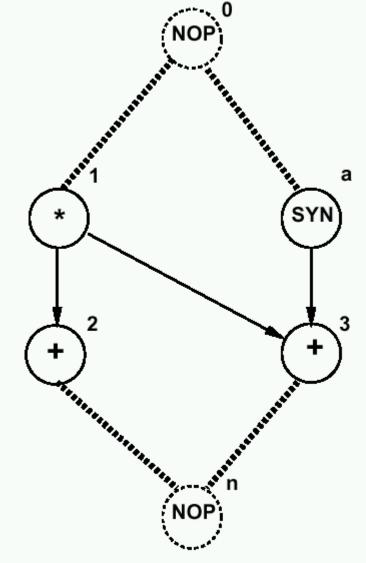
- Assumption:
 - All delays are fixed and known.
- Set of <u>linear inequalities</u>.
- Longest path problem.
- Algorithms for the longest path problem were discussed in Chapter 2:
 - Bellman-Ford,
 - Liao-Wong.

Method for scheduling with <u>unbounded-delay</u> operations

- Unbounded delays:
 - Synchronization.
 - Unbounded-delay operations (e.g. *loops*).
- Anchors.
 - Unbounded-delay operations.
- Relative scheduling:
 - Schedule operations with respect to the anchors.
 - Combine schedules.

Example of what?

• $t_3 = \max \{t_1 + d_1; t_a + d_a\}$



Relative scheduling method

- For each vertex:
 - Determine *relevant anchor set R(.)*.
 - Anchors affecting start time.
 - Determine <u>time offset</u> from anchors.
 - Start-time:

$$t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\}$$

 Computed only at run-time because delays of anchors are unknown.

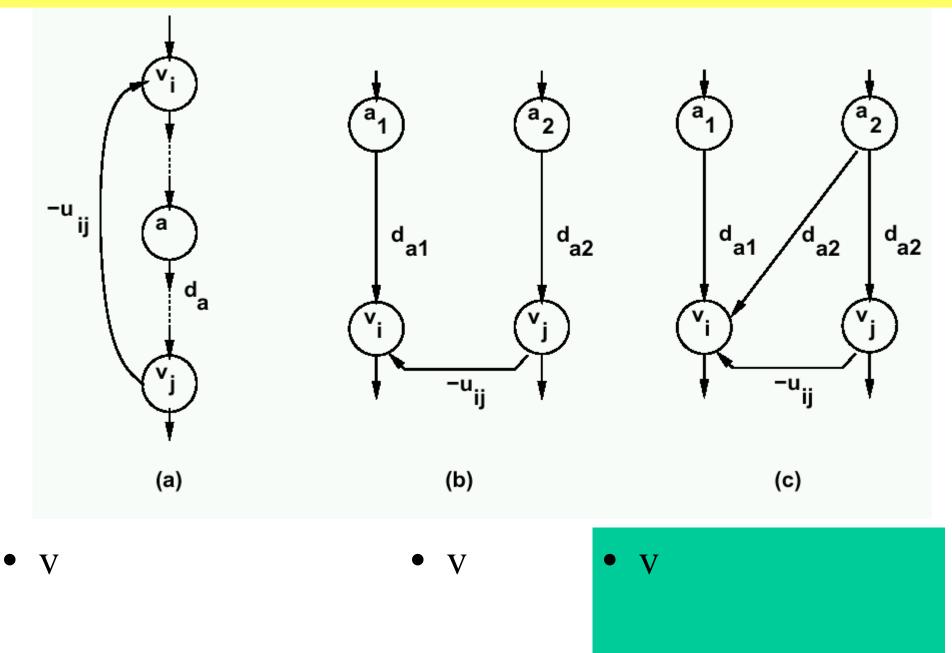
Relative scheduling under timing constraints

- Problem definition:
 - Detailed timing constraints.
 - Unbounded delay operations.
- Solution:
 - May or <u>may not</u> exist.
 - Problem may be <u>ill-specified</u>.

Relative scheduling <u>under timing</u> <u>constraints</u>

- Feasible problem:
 - A solution exists when unknown delays are zero.
- Well-posed problem:
 - A solution exists for any value of the unknown delays.
- Theorem:
 - A constraint graph can be made well-posed *iff* there are no cycles with <u>unbounded weights</u>.

Example of Relative scheduling under timing constraints

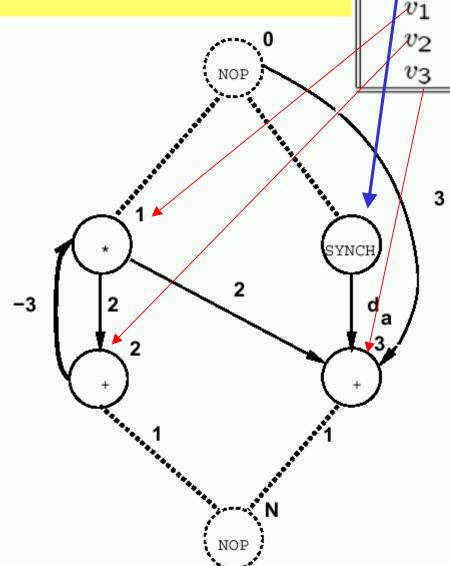


Relative scheduling approach

- Analyze graph:
 - Detect anchors.
 - Well-posedness test.
 - Determine dependencies from anchors.
 - Schedule ops with respect to relevant anchors:
 Bellman-Ford, Liao-Wong, Ku algorithms.
- Combine schedules to determine start times:

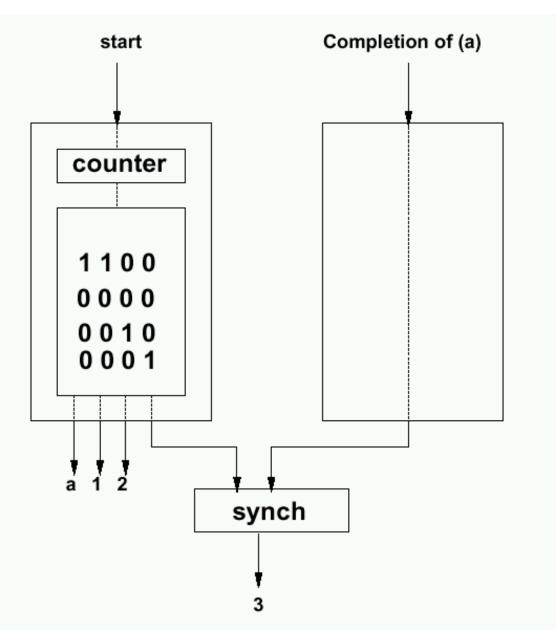
$$t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\} \quad \forall i$$

Example of Relative scheduling



Vertex	Relevant Anchor Set	Offsets	
v_i	$R(v_i)$	t_0	t_a
a	$\{v_0\}$	0	-
v_1	$\{v_0\}$	0	-
v_2	$\{v_0\}$	2	-
v_3	$\{v_0,a\}$	3	0

Example of control-unit synthesized for Relative scheduling



Scheduling under resource constraints

- <u>**Classical**</u> scheduling problem.
 - <u>Fix</u> area bound <u>minimize</u> latency.
- The amount of available resources affects the achievable latency.
- *Dual* problem:
 - <u>Fix latency bound</u> <u>minimize</u> resources.
- Assumption:
 - All delays bounded and known.

Minimum latency resource-constrained scheduling problem

- Given a set of operations V with integer delays D a partial order on the operations E, and <u>upper bounds</u> {a_k; k = 1, 2,...,n_{res}}:
- Find an integer labeling of the operations φ : V --> Z⁺ such that :
 t_i = φ(v_i),

$$-t_i \ge t_j + d_j \ orall \ i,j \ s.t. \ (v_j,v_i) \in E$$
,

- $|\{v_i | \mathcal{T}(v_i) = k \text{ and } t_i \leq l < t_i + d_i\}| \leq a_k$ $\forall \text{types } k = 1, 2, \dots, n_{res} \text{ and } \forall \text{ steps } l$
- and t_n is minimum.

Scheduling under <u>resource</u> <u>constraints</u>

- Intractable problem.
- Algorithms:
 - Exact:
 - Integer linear program.
 - Hu (restrictive assumptions).
 - Approximate:
 - List scheduling.
 - Force-directed scheduling.

ILP formulation:

• Binary decision variables:

 $-X = \{x_{il}; i = 1, 2, \dots, n; l = 1, 2, \dots, \overline{\lambda} + 1\}.$

- x_{il} , is TRUE only when operation v_i starts in step l of the schedule (i.e. $l = t_i$).

 $-\overline{\lambda}$ is an upper bound on latency.

Start time of operation
$$\mathbf{v}_i$$

$$\sum_l l \cdot x_{il}$$

ILP formulation constraints

• Operations start only once.

$$\sum_{l} x_{il} = 1 \quad i = 1, 2, \dots, n$$

• Sequencing relations must be satisfied.

$$t_i \ge t_j + d_j \qquad \forall (v_j, v_i) \in E$$
$$\sum_l l \cdot x_{il} - \sum_l l \cdot x_{jl} - d_j \ge 0 \quad \forall (v_j, v_i) \in E$$

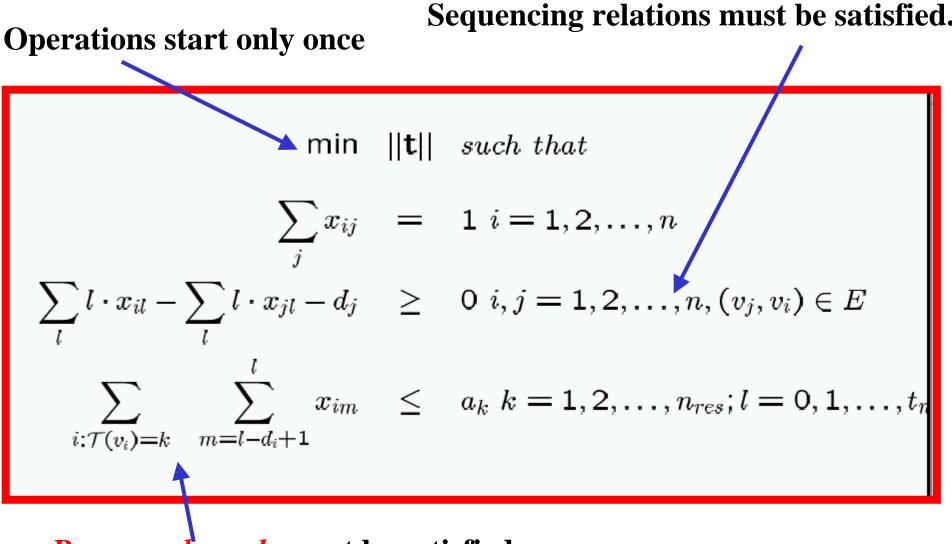
ILP formulation constraints (cont)

Resource bounds must be satisfied.

• Simple case (unit delay)

$$\sum_{i:\mathcal{T}(v_i)=k} x_{il} \leq a_k \quad k = 1, 2, \dots, n_{res}; \quad \forall l$$

ILP Formulation

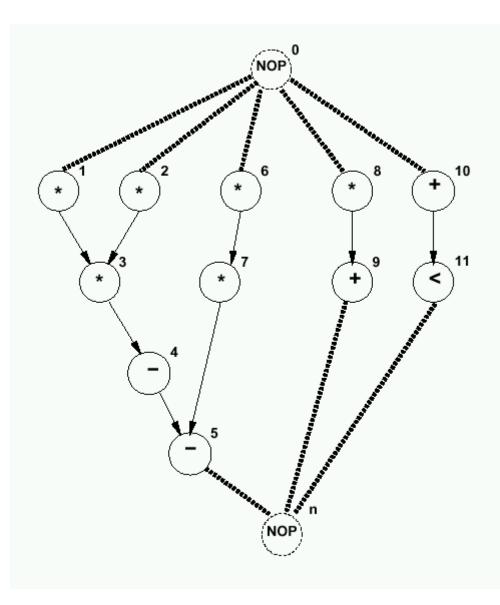


Resource bounds must be satisfied

Example of ILP Formulation

- Resource constraints:
 - 2 ALUs, 2 Multipliers.
 - $-a_1 = 2, a_2 = 2.$
- Single-cycle operation.

 $-d_i = 1 \forall i.$



Operations start only once.

•
$$x_{11} = 1$$

• $x_{61} + x_{62} = 1$

•

• Sequencing relations must be satisfied.

•
$$x_{61} + 2 x_{62} - 2 x_{72} - 3 x_{73} + 1 \le 0$$

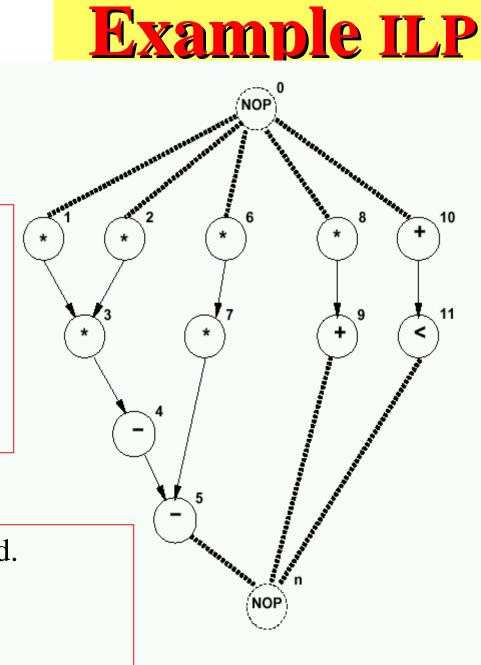
•
$$2 x_{92} + 3 x_{93} + 4 x_{94} - 5 x_{N5} + 1 \le 0$$

•

Resource bounds must be satisfied.

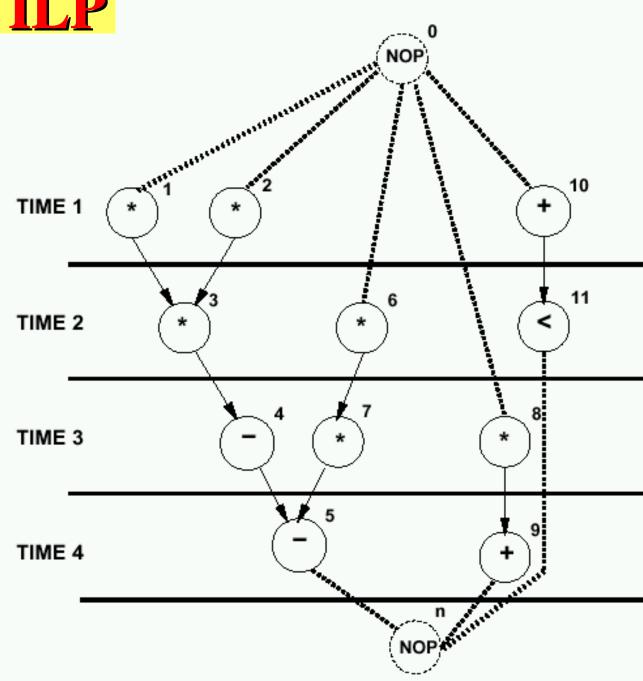
• $x_{11} + x_{21} + x_{61} + x_{81} \le 2$

•
$$x_{32} + x_{62} + x_{72} + x_{82} \le 2$$



Example ILP

- Solution
- latency 4
- multipliers =2
- ALU =2



Dual ILP formulation

- Minimize resource usage under latency constraints.
- Additional constraint:
 - Latency bound must be satisfied.

$$\sum_{l} l x_{nl} \leq \overline{\lambda} + 1$$

- Resource usage is unknown in the constraints.
- Resource usage is the objective to minimize.

Example

- **Multipliers** = 2
- ALUs = 2
- 2 * 5 + 2*1= 12= cost of solution



- Multiplier area = 5. ALU area = 1.
- Objective function: $5a_1 + a_2$.

ILP Solution

- Use **standard ILP** packages.
- Transform into LP (linear programming) problem
 [Gebotys].
- Advantages:
 - Exact method.
 - Others constraints can be incorporated.
- Disadvantages:
 - Works well up to few thousand variables.