SCHEDULING II © Giovanni De Micheli Stanford University

Scheduling under resource constraints

• Simplified models:

– Hu's algorithm.

- Heuristic algorithms:
 - <u>List</u> scheduling.
 - Force-directed scheduling.

Hu's algorithm

• Assumptions:

- Graph is a <u>forest</u>.
- All operations have <u>unit delay</u>.
- All operations have the same type.

• Algorithm:

- Label vertices with <u>distance from sink</u>.
- <u>Greedy</u> strategy.
- <u>Exact</u> solution.

Example of using Hu's algorithm

- Assumptions:
 - One resource type only.
 - All operations have **unit delay**.

Algorithm

Hu's schedule with a resources

- Set step, *l* = 1.
- Repeat until all operations are scheduled:
 - Select $s \leq a$ resources with:
 - All predecessors scheduled.
 - Maximal labels.
 - Schedule the **s** operations at step *l*.
 - Increment step l = l + l.

All
operations
have <u>unit</u>
delay.
All
operations
have <u>the</u>
same type.

- Minimum latency with a
 - = 3 resources.
 - Step 1:
 - Select $\{v_1, v_2, v_6\}$.
 - Step 2:
 - Select { v_3 , v_7 , v_8 }.
 - Step 3:
 - Select $\{v_4, v_9, v_{10}\}$.
 - Step 4:
 - Select { v_5 , v_{11} }.

We always select 3 resources

Algorithm Hu's schedule with **&** resources

Conservation of

2

10

11

Exactness of Hu's algorithm <u>Theorem1:</u>

- Given a DAG with operations of the same type.

$$\overline{a} = \max_{\gamma} \left\{ \frac{\sum_{j=1}^{\gamma} p(\alpha + 1 - j)}{\gamma + \lambda - \alpha} \right\}$$

- a is a lower bound on the number of resources to complete a schedule with latency λ .
- γ is a positive integer.
- <u>Theorem2</u>:
 - •Hu's algorithm applied to a tree with unit-cycle resources achieves latency λ with a resources.
- Corollary:
 - Since \overline{a} is a lower bound on the number of resources for achieving λ , then λ is minimum.

List scheduling algorithms

- Heuristic method for:
 - $-\underline{1.}$ Minimum <u>latency</u> subject to <u>resource bound</u>.
 - $-\underline{2.}$ Minimum <u>resource</u> subject to <u>latency bound</u>.
- Greedy strategy (*like* Hu's).
- General graphs (*unlike* Hu's).
- Priority list heuristics.
 - Longest path to sink.
 - Longest path to timing constraint.

1. List scheduling algorithm for minimum latency for resource bound

```
LIST_L (G(V, E), a) {
```

```
l = 1;
```

repeat {

}

l = l + 1;

for each resource type $\mathbf{k} = 1, 2, \dots, n_{res}$ Determine candidate operations U_{lk} ; Determine unnished operations $T_{l,k}$; Select $S_k \subseteq U_{l,k}$ vertices, such that $|S_k| + |T_{l,k}| \le a_k$; Schedule the S $_{k}$ operations at step l; until $(v_n \text{ is scheduled})$; return (t);

1. List scheduling algorithm for minimum latency for resource bound

- Assumptions:
 - $-a_1 = 3$ multipliers with delay 2.
 - $-a_2 = 1$ ALUs with delay 1.

1. List scheduling algorithm for minimum latency for resource bound

- Assumptions:
 - $a_1 = 3$ multipliers with delay 2.
 - $a_2 = 1$ ALUs with delay 1.

- Solution
- 3 multipliers as assumed
- 1 ALU as assumed
- LATENCY 7

2. List scheduling algorithm for minimum resource usage

```
LIST_R (G(V,E), \lambda) {
    a = 1;
    Compute the latest possible start times t<sup>L</sup> by ALAP (G(V,E), \lambda);
      if (t_{0}^{L} < 0)
       return ($);
    l = 1;
         repeat {
           for each resource type k = 1, 2, ..., n_{res} {
                Determine candidate operations U_{1k};
                Compute the slacks
                                       \{s_i = t_i^L - l \ \forall v_i \in U_{lk}\}
                Schedule the candidate operations with zero slack and update a;
                Schedule the candidate operations that do not require additional resources;
   l = l + 1;
until (v<sub>n</sub> is scheduled);
return (t, a );
}
```

2. Example: List scheduling algorithm for minimum resource

usage

Force-directed scheduling

- Heuristic scheduling methods [Paulin]:
 - 1. <u>Minimum *latency*</u> subject to <u>resource bound</u>.
 - Variation of list scheduling: FDLS.
 - 2. <u>Minimum *resource*</u> subject to <u>*latency bound*</u>.
 - Schedule <u>one operation</u> at a time.
 - Rationale:
 - Reward *uniform distribution* of operations across schedule steps.

Force-directed scheduling <u>definitions</u>

- Operation interval: mobility plus one (μ_i +1).
 - Computed by ASAP and ALAP scheduling

$[t_{i}^{S}, t_{i}^{L}].$

- Operation probability **p**_i(**l**) :
 - Probability of executing in a given step.
 - $1/(\mu_i + 1)$ inside interval; 0 elsewhere.
- Operation-type distribution $\mathbf{q}_{\mathbf{k}}(\mathbf{l})$:
 - <u>Sum of the operation probabilities</u> for each type.

Example of Force-directed scheduling

Example of Force-directed scheduling

Force

- Used as *priority* function.
- Force is related to concurrency
 Sort operations for least force.
- Mechanical analogy:
 - Force = *constant* * *displacement*.
 - *constant* = operation-type distribution.
 - *displacement* = change in probability.

Forces related to the assignment of an operation to a control step

- Self-force:
 - Sum of forces to other steps.
 - Self-force for operation \mathbf{v}_i in step l

$$\sum_{\substack{m=t_i^S}}^{t_i^L} q_k(m)(\delta_{lm} - p_i(m))$$

• Successor-force:

- Related to the successors.
- Delaying an operation implies delaying its successors.

Example: operation v₆

- It can be scheduled in the first two steps.
 - p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0.
- <u>Distribution:</u> q(1) = 2.8; q(2) = 2.3.
- Assign $\mathbf{v_6}$ to step 1:
 - variation in probability 1 0.5 = 0.5 for step 1
 - variation in probability 0 0.5 = -0.5 for step 2
- Self-force: 2.8 * 0.5 2.3 * 0.5 = +0.25

Example: operation v₆

- Assign $\mathbf{v_6}$ to step 2:
 - variation in probability 0 0.5 = -0.5 for step 1
 - variation in probability 1 0.5 = 0.5 for step 2
- Self-force: -2.8 * 0.5 + 2.3 * 0.5 = -0.25

Example: operation v₆

• Successor-force:

- Operation \mathbf{v}_7 assigned to step 3.
- -2.3(0-0.5) + 0.8(1-0.5) = -0.75
- **Total-force** = -1.
- Conclusion:
 - Least force is for step 2.
 - Assigning $\mathbf{v}_{\mathbf{6}}$ to step 2 reduces concurrency.

Force-directed scheduling algorithm for minimum resources

```
FDS ( G(V,E), λ ) {
    repeat {
        Compute the time-frames;
        Compute the operation and type
        probabilities;
```

Compute the self-forces, p/s-forces and total forces;

Schedule the operation with least force, update time-frame;

} until (all operations are scheduled)

return (t);

Scheduling with chaining

- Consider propagation delays of resources not in terms of cycles.
- Use scheduling to *chain* multiple operations in the same control step.
- Useful technique to explore effect of *cycle-time* on area/latency trade-off.
- Algorithms:
 - ILP,
 - ALAP/ASAP,
 - List scheduling.

Example of Scheduling with chaining

• Cycle-time: 60.

- Scheduling determines area/latency trade-off.
- Intractable problem in general:
 - Heuristic algorithms.
 - **ILP** formulation (small-case problems).
- Chaining:
 - Incorporate *cycle-time* considerations.