RESOURCE SHARING

© Giovanni De Micheli Stanford University

Ourtline

- Resource-dominated circuits.
- Flat and hierarchical graphs.
- Functional and memory resources.
- Extensions.
- Non resource-dominated circuits.
- Concurrent scheduling and binding.
- Module selection.

Allocation and binding

Allocation:

- Number of resources is available. Which resource for which operation.

Binding:

- Binding is a relation between operations and resources.
- Sharing:
- Many-to-one relation. Several operations share one resurce
Optimum binding/sharing:
- Minimize the resource usage.

Binding

- Limiting cases of binding:
- Dedicated resources:
- One resource per operation.
- No sharing.
- One multi-task resource:
- ALU.
- One resource per type.

Optimum sharing problem

- We start from scheduled sequencing graphs.
-Operation concurrency is well defined.
- We consider operation types independently.
-Problem decomposition.
-Perform analysis for each resource type.

Compatibility graphs and coniflict graphs

- Operation compatibility:
- Same type.
- Non concurrent.

Compatibility graph:

- Vertices: operations.
- Edges: compatibility relation.

Conflict graph:

- Complement of compatibility graph.

These are the same compatibility and incompatibility graps as we discussed already many times

We start from scheduled

Compatibilility graph is a complement of a conflict graph

Multiplier ALU

Examples of
 Compatibility graphs and conflict graphs

Compatibility graphs
Observe that 1 and 2 are not compatible since they are executed concurrently

Algorithmic solution to

the optimum bindling problem

- Compatibility graph.
- Partition the graph into a minimum number of cliques.
- Find clique cover number $\mathbb{\kappa}\left(\mathrm{G}_{+}\right)$.
- Conflict graph.
- Color the vertices by a minimum number of colors.
- Find chromatic number $\gamma\left(\mathrm{G}_{-}\right)$
- NP-complete problems - Heuristic algorithms.

Examples of using conflict and compatibility graphs for bindling

ALU1: 1,3,5
ALU2: 2,4

Perfect graphs

Comparability graph:

- Graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ has an orientation $\mathrm{G}(\mathrm{V}, \mathrm{F})$ with the transitive property.
$\left.-\left(\mathbf{v}_{\mathrm{i}}, \mathbf{v}_{\mathrm{j}}\right) \in \mathrm{F} \wedge\left(\mathbf{v}_{\mathrm{j}}, \mathbf{v}_{\mathrm{k}}\right) \in \mathrm{F}\right)=>\left(\mathbf{v}_{\mathrm{i}} ; \mathbf{v}_{\mathrm{k}}\right) \in \mathrm{F}$.
- Interval graph:
- Vertices correspond to intervals.
- Edges correspond to interval intersection.
- Interval graphs are a subset of chordal graphs:
- Every loop with more than three edges has a chord.
What is a Perfect graph?

$$
\begin{gathered}
\text { Data-flow graphs } \\
\text { (at sequencing graphs) }
\end{gathered}
$$

- The compatibility/conflict graphs have special properties.
- Compatibility:
- Comparability graph.
- Conflict:
- Interval graph.
- Polynomial time solutions:
- Golumbic's algorithm.
- Left-edge algorithm.

Example of compatibility graph being a comparability graph

We start from scheduled

This graph shows both scheduling order and compatibility

This graph is a comparability graph

1,3,7 = Multiplier

6,8 $=$ Multiplier

$$
\begin{aligned}
& 10,11,4,9=\mathrm{ALU} \\
& 5=\mathbf{A L U}
\end{aligned}
$$

Solution is not unique, 4,10,11,5

Solution
Latency $=4$
Multipliers = 2
$\mathbf{A L U}=2$

Example of using conflict groph which is an interval graph

TIME 3

TIME 4

Solution
Latency $=4$
Multipliers = 2
$\mathbf{A L U}=\mathbf{2}$
$\{1,3,7\}=$ multiplier
$\{2,6,8\}=$ multiplier
$\{4,5,10,11\}=$ ALU
$\{9\}=A L U$
 graph

- Input:
- Set of intervals with left and right edge.
- Rationale:
- Sort intervals by left edge.
- Assign non overlapping intervals to first color using the sorted list.
- When possible intervals are exhausted increase color counter and repeat.

Leflt-edge algorithm

c = 0;
while (some interval has not been colored) do \{

```
        S = |;
        r = 0;
        while ( }\exists\textrm{s}\in\textrm{L}\mathrm{ such that l }\mp@subsup{\textrm{s}}{\textrm{s}}{}>\mathbf{r})\mathrm{ do {
        s = First element in the list L with I }\mp@subsup{\textrm{s}}{\textrm{s}}{}>\mathbf{r}\mathrm{ ;
        S = S \cup{s };
        r= r
        Delete s from L;
        }
c = c +1;
Label elements of S with color c;
```

\}

Coloring of interval graph

Last slide for today

(c)

(d)

ILP formulation of binding

- Boolean variables b_{ir}
- Operation i bound to resource \mathbf{r}.
- Boolean variables \mathbf{x}_{il}
- Operation i scheduled to start at step l.

Hierorchical sequencing grophs

Hierarchical conflict/compatibility graphs.

- Hierarchical graphs are easy to compute.
- Hierarchical graphs prevent sharing across hierarchy.

Flatten hierarchy.

- Flattening the hierarchy produces bigger graphs.
- It also destroys nice properties.

Example of Hierarchical

conflict/compatibility graphs

Hierarchical
sequencing graphs

Example of Hierarchical

conflict/compatibility graphs

Register bindling problem

Given a schedule:

- Lifetime intervals for variables.
- Lifetime overlaps.

Conflict graph (interval graph).

- Vertices <--> variables.
- Edges <--> overlaps.
- Interval graph.

Compatibility graph (comparability graph).

- Complement of conflict graph.

Register sharing datæ-flow graphs

- Given:
- Variable lifetime conflict graph.
- Find:
- Minimum number of registers storing all the variables.
- Key point:
- Interval graph:
- Left-edge algorithm. (Polynomial-time).

Example of Register sharing data-filow grophs

(a)

Hierarchical sequencing graphs

We need 3registers

Conflict
graph

Register shering genersl cese

- Iterative constructs:
- Preserve values across iterations.
- Circular-arc conflict graph:
- Coloring is intractable.
- Hierarchical graphs:
- General conflict graphs:
- Coloring is intractable.
- Heuristic algorithms.

Example of Register sharing

 generall case
Conflict graph

(a)

Hierarchical sequencing graphs

(b)

Excample continued

Variable-lifetimes and circular-arc conflict graph

circular-arc conflict graph

Compatibility graph

Multiport-memory binding

- Find minimum number of ports to access the required number of variables.
- Variables use the same port:
- Port compatibility/conflict.
- Similar to resource binding.
- Variables can use any port:
- Decision variable x_{il} is TRUE when variable i is accessed at step l.
- Optimum:

$$
\max _{1 \leq l \leq \lambda+1} \sum_{i=1}^{n_{v a r}} x_{i l}
$$

Multiport-memory binding

- Find maximum number of variables to

 be stored through a fixed number of ports a.-Boolean variables $\left\{\mathrm{b}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}_{\text {var }}\right\}$:
$-\max \sum_{i=1}^{n_{\text {var }}} b_{i}$ such that
$-\sum_{i=1}^{n_{v a r}} b_{i} x_{i l} \leq a \quad l=1,2, \ldots, \lambda+1$

Example formulation for Multiport-memory binding

Time - step $1: r_{3}=r_{1}+r_{2} ; r_{12}=r_{1}$
Time - step $2: r_{5}=r_{3}+r_{4} ; r_{7}=r_{3} * r_{6} ; r_{13}=r_{3}$
Time - step $3: r_{8}=r_{3}+r_{5} ; r_{9}=r_{1}+r_{7} ; r_{11}=r_{10} / r_{5}$
Time - step $4: r_{14}=r_{11} \wedge r_{8} ; r_{15}=r_{12} \vee r_{9}$
Time - step $5: r_{1}=r_{14} ; r_{2}=r_{15}$
$\max \sum_{i=1}^{15} b_{i}$ such that

$$
b_{1}+b_{2}+b_{3}+b_{12} \leq a
$$

$$
b_{3}+b_{4}+b_{5}+b_{6}+b_{7}+b_{13} \leq a
$$

$b_{1}+b_{3}+b_{5}+b_{7}+b_{8}+b_{9}+b_{10}+b_{11} \leq a$

$$
\begin{aligned}
b_{8}+b_{9}+b_{11}+b_{12}+b_{14}+b_{15} & \leq a \\
b_{1}+b_{2}+b_{14}+b_{15} & \leq a
\end{aligned}
$$

Example solution for Multiport-memory binding

- One port $\mathrm{a}=1$:
$-\left\{\mathrm{b}_{2}, \mathrm{lb}_{4}, \mathrm{lb}_{8}\right\}$ non-zero.
- 3 variables stored: $\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{8}$.
- Two ports $\mathrm{a}=2$:
-6 variables stored: $\mathbf{v}_{2}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{10}, \mathbf{v}_{12}, \mathbf{v}_{14}$
- Three ports $\mathrm{a}=3$:
-9 variables stored: $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}, \mathbf{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{12}$, $\mathrm{V}_{13}, \mathrm{~V}_{14}$

Bus sharing and bindling

- Find the minimum number of busses to accommodate all data transfer.
- Find the maximum number of data transfers for a fixed number of busses.
- Similar to memory binding problem.
- ILP formulation or heuristic algorithms.

One bus:

- 3 variables can be transferred.

Two busses:

- All variables can be transferred.

Example of
Bus sharing and bindling

Scheduling and binding
 Resource dominated circuits

- Area and delay of resources dominate.
- Strategy:
- Scheduling under area constraints:
- Minimize latency.
- Binding.
- Share resource within bounds.
- Decoupling between scheduling and binding.

Scheduling and binding General circuits

- Area and delay influenced by:
- Sparse logic,
- wiring,
- registers and control circuit.

Binding affects the cycle-time:

- It may invalidate a schedule.

Scheduling after binding:

- Binding under restrictive assumptions.
- Time-frame of operations not yet known.

Scheduling mind binding opproaches

- Concurrent scheduling and binding.
- ILP model- exact.
- Some heuristic algorithms.
- Scheduling before binding:
- Good for DSP application.
- Binding before scheduling:
- Iterative techniques.

Module selection problem

- Library of resources:
- More than one resource per type.
- Example:
- Ripple-carry adder.
- Carry look-ahead adder.
- Resource modeling:
- Resource subtypes with:
- (area, delay) parameters.

Module selection solution

- ILP formulation:
- Decision variables:
- Select resource sub-type.
- Determine (area, delay).
- Heuristic algorithms:
- Determine minimum latency with fastest resource subtypes.
- Recover area by using slower resources on noncritical paths.

Example of Module selection solution

First multiplier

Second multiplier

First ALU

- Multipliers with: area
$-($ Area, delay $)=(5,1)$ and $(2,2)$
Second ALU

Second Example of Module selection solution for the same problem

- Latency bound of 4 (which is better!).
- Fast multipliers for $\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$.
- Slower multipliers can be used elsewhere.
- Less sharing.
- Minimum-area design uses fast multipliers only.

2 multipliers
2 ALUs

Summery

- Resource sharing is reducible to coloring/cliquecovering.
- Simple for flat graphs.
- Intractable, but still easy in practice, for other graphs.
More complicated for non resource-dominated circuits.

Extension: module selection.

