WHAT IS THIS CLASS ABOUT?

DESIGN OF VLSI CIRCUITS

© Giovanni De Micheli Stanford University

Microelectronics

- Enabling and strategic *technology*.
- Primary markets:
 - Information systems.
 - Telecommunications.
 - Consumer.
- Secondary markets:
 - Systems (e.g., transportation).
 - Manufacturing (e.g., robots).
- Application of VSLI circuit technology.

Computer-Aided Design

- Enabling design *methodology*.
- Makes electronic design possible:
 - Large scale design management.
 - Design optimization.
 - Reduced design time.
- Key strategic importance.

Electronic market

Trends in microelectronics

- Improvements in device technology:
 - Smaller circuits.
 - Higher performance.
 - More devices on a chip.
- Higher degree of integration.
 - More complex systems.
 - Lower cost of computation.
 - Higher reliability.

Moore's law

Integration-scale limitations

- Intrinsic physical scaling limits.
- Capital investment for fabrication.
 Use of appropriate design styles.
- Large-scale design management.
 - Use of CAD design tools.

Microelectronic design problems

- Use most recent technologies.
 - To be competitive in performance.
- Reduce design cost.
 - To be competitive in price.
- Speed-up design time.
 - Time-to-market is critical.

Microelectronic economics

- Design cost:
 - *Design time* and *fabrication cost*.
 - Large *capital investment*.
 - Near impossibility to *repair*.
- Recapture costs:
 - Large *volume* production is beneficial.
 - *Zero-defect* designs are essential.
 - Follow market *evolution*.

Microelectronic circuits

- General-purpose processors:
 - High-volume sales.
 - High performance.
- Application-Specific Integrated Circuits (ASICs):
 - Varying volumes and performances.
- Prototypes.
- Special applications (e.g. space).

Microelectronic design styles

- Adapt circuit design style to market requirements:
- Parameters:
 - Cost.
 - Performance.
 - Volume.
- Custom and semi-custom design.

Semi-custom design

Standard cells

- Cell library:
 - Cells are designed once.
 - Cells are highly optimized.
- Layout style:
 - Cells are placed in rows.
 - Channels are used for wiring.
- Compatible with macro-cells (e.g. RAMs).

Macro-cells

- Module generators:
 - Synthesized layout.
 - Variable area and aspect-ratio.
- Examples:
 - RAMs, ROMs, PLAs, general logic blocks.
- Features:
 - Layout can be highly optimized.
 - Structured-custom design.

Array-based design

- **Pre-diffused** arrays:
 - Personalization by metalization/contacts.
 - Mask-Programmable Gate-Arrays.
- *Pre-wired* arrays:
 - Personalization on the field.
 - Field-Programmable Gate-Arrays.

MPGAs

- Array of <u>sites</u>:
 - Each site is a set of transistors.
- Batches of wafers can be pre-fabricated.
- Few masks to personalize chip.
- Lower cost than cell-based design.

FPGAs

- Array of cells:
 - Each cell performs a logic function.
- Personalization:
 - Soft: memory cell (e.g. Xilinx).
 - Hard: Anti-fuse (e.g. Actel).
- Immediate turn-around (for low volumes).
- Inferior performances and density.
- Good for prototyping.

Semi-custom style trade-off

	Custom	Cell-based	Pre-diff.	Pre-wired
Density	Very High	High	High	Medium-Low
Performance	Very High	High	High	Medium-Low
Flexibility	Very High	High	Medium	Low
Design time	Very Long	Short	Short	Very Short
Man. time	Medium	Medium	Short	Very Short
Cost - Iv	Very High	High	High	Low
Cost - hv	Low	Low	Low	Medium-High

Microelectronic circuit design and production

Microelectronic circuit design

- Conceptualization and modeling:
 - Hardware Description Languages (HDLs).
- Synthesis and optimization:
 - Model refinement.
- Validation:
 - Check for correctness.

Modeling abstractions

ARCHITECTURAL LEVEL PC = PC + 1; FETCH (PC); DECODE (INST);

Modeling abstractions

- Architectural level:
 - Operations implemented by resources.
- Logic level:
 - Logic functions implemented by gates.
- Geometrical level:
 - Devices are geometrical objects.

Modeling views

Modeling views

- Behavioral view:
 - Abstract function.
- Structural view:
 - An interconnection of parts.
- Physical view:
 - Physical objects with size and positions.

Modeling views and abstractions

Circuit synthesis

• Architectural-level synthesis:

- Determine the macroscopic structure:
 - Interconnection of major building blocks.
- Logic-level synthesis:
 - Determine the microscopic structure:
 - Interconnection of logic gates.
- Geometrical-level synthesis:

(Physical design)

- Determine positions and connections.

Modeling views

Microelectronic circuit optimization

• Performance:

- Delay and cycle-time.
- Latency.
- Throughput (for pipeline applications).
- Power consumption.
- Area (yield and packaging cost).
- Testability.

Design space and evaluation space

Optimization trade-off in combinational circuits

Optimization trade-off in sequential circuits

Pareto points

- Multi-criteria optimization.
- Multiple objectives.
- Pareto point:
 - A point of the design space is a Pareto point if there is <u>no other point with</u>:
 - at least one inferior objectives.
 - all other objectives inferior or equal.

Example

- Implement f = p q r s with:
 - 2-input or 3-input AND gates.
- Area and delay proportional to number of inputs.

Example design evaluation space

Summary

- Computer-aided design methodology:
 - Capture design by HDL models.
 - Synthesize more detailed abstractions.
 - Optimize circuit parameters.
- Logic synthesis and optimization:
 - Manipulate and optimize circuit models at the logic abstraction levels.