HW/SW Co-design

Design of Embedded Systems Jaap Hofstede Version 3, September 1999 Embedded system

- is a computer system (combination of hardware and software)
- is part of a larger system (that may or may not be a computer)
- performs a fixed function for that system

SW or HW?

Software

Flexibility
Late design changes
Features
Reuse
Reduced time to market

Hardware

PerformanceLow power(Security)

Applications

Relatively small systems Consumer electronics Consumer products Automobiles Telecommunication Computer peripherals Copiers, FAX machines Multimedia systems

Relatively large systems

Airplanes 🖉

Industry

Classes of embedded systems

Reactive (Control Dominated)

State 🖉

Transforming (Data Dominated)

Digital Signal Processing (DSP)

Limited functionality, but very fast

Cost

Main parts of cost

Initial cost
Product cost
Time to market

Design is a trade-off

Cost Design time Performance

Technological developments

Number of transistors: 35%
Clock speed: 25%
Processor performance: 50%

Design Capacity: only about 20%

What to do with all those transistors? Integrate several functions Programmable processors ROM for Programs for these processors

Classes of embedded systems

- Standard microprocessor or DSP with separate RAM, ROM and interfaces
- Standard microprocessor or DSP with ASIC or FPGA
- Processor core integrated on ASIC or FPGA

ASIP

To manage complexity

SW and HW partitioning at an early stage

HW and SW designed separately

HW/SW Co-design

- Specify, explore, refine
- Flexible design strategy
- Hierarchy of models at different abstraction levels
- HW and SW designed with interaction and feedback
- Final partitioning after evaluation of trade-offs

Requires

- Co-specification
- Co-development (Cosynthesis)
- Co-verification

Goals

Reduced time to market
Better products
Lower development costs
Lower number of design cycles
Higher level of abstraction
Volume specific targets

Tools

Design framework
Common specifications
Silicon compilers
Software compilers
Real-time kernels
Simulators
Analysis tools

Application domain Specification and programming languages Compilers (!) VLSI design Parallel/distributed systems Real-time systems Formal methods (Performance) analysis

Provide clear and unambiguous description

- Allow CAD tools
- Should not constrain implementation in either SW or HW
- To be compiled to other languages for HW (VHDL) or SW (C)
- Executable to verify if requirements are met

Computation models

Control dominated

- Finite State Machines (FSM)
- Communicating Sequential Processes (CSP)
- Discrete event models (VHDL)

Petri nets

Data dominated

- Control flow graphs
- Data flow graphs
- Control/Data flow graphs

Co-simulation

Simulation of systems with a mix of different kinds of SW and HW components

Levels

- High abstraction
- Instructions
- ASIC models
- / Gate
- Switch
- Analogue

Compilers

Front-end (target independent)

Scanning
Parsing
Static semantic analysis
Optimization

Back-end (source independent)

OptimizationCode generation

- 1. Instruction selection
- 2. Register allocation
- 3. Instruction scheduling

Currently often separate

Characteristics of DSP's and ASIPs make these three subtasks mutually dependent

Coupling necessary for generation of optimal code

Harvard

Multiple busses with restricted connectivity High I/O-rate

Irregular register sets of different sizes

Special purpose registers

Special registers for zero-overhead loops

Multiply-add-accumulate in one instruction

Fixed-point operations

Hardware supported addressing modes

Example: Data path ADSP210x

$\forall i: 0 \le i \le n: y_i[j] = y_{i-1}[j] + x[j-i]^*a[i]$

Very hard to generate sufficiently efficient code

Intensive optimization required
Coupling of three subtasks
Long compilation time acceptable

- ASIP's often have characteristics of DSP's
- Specific code generator required
- Retargetable code generators
- Code generator must be generated automatically from description of processor
 - ℅From register description and instruction set (behavior)
 - ➢From structure of ASIP data path as generated by high level synthesis (structure)