
HW/SW Co-design

Design of Embedded Systems
Jaap Hofstede
Version 3, September 1999

99/09/07 HW/SW Co-design 2

Embedded Systems

Embedded system
� is a computer system (combination of hardware and

software)
� is part of a larger system (that may or may not be a

computer)
�performs a fixed function for that system

99/09/07 HW/SW Co-design 3

SW or HW?

Software

�Flexibility
�Late design changes

�Features
�Reuse

�Reduced time to market

Hardware

�Performance
�Low power
�(Security)

99/09/07 HW/SW Co-design 4

Applications

Relatively small systems
�Consumer electronics
�Consumer products
�Automobiles
�Telecommunication
�Computer peripherals
�Copiers, FAX machines
�Multimedia systems

Relatively large systems
�Airplanes
�Industry

99/09/07 HW/SW Co-design 5

Classes of embedded systems

Reactive
(Control Dominated)

�State

�Real-time

Transforming
(Data Dominated)

�Digital Signal Processing
(DSP)

�Limited functionality, but
very fast

99/09/07 HW/SW Co-design 6

Cost

Main parts of cost

�Initial cost
�Product cost
�Time to market

Design is a trade-off

�Cost
�Design time
�Performance

99/09/07 HW/SW Co-design 7

Technological developments

�Number of transistors: 35%
�Clock speed: 25%
�Processor performance: 50%

�Design Capacity: only about 20%

What to do with all those transistors?
�Integrate several functions
�Programmable processors
�ROM for Programs for these processors

Gap is growing

99/09/07 HW/SW Co-design 8

Classes of embedded systems

�Standard microprocessor or DSP with separate RAM,
ROM and interfaces

�Standard microprocessor or DSP with ASIC or FPGA
�Processor core integrated on ASIC or FPGA
�ASIP

99/09/07 HW/SW Co-design 9

Traditional design

To manage complexity
�SW and HW partitioning at an early stage
�HW and SW designed separately

99/09/07 HW/SW Co-design 10

HW/SW Co-design

�Specify, explore, refine
�Flexible design strategy
�Hierarchy of models at

different abstraction
levels

�HW and SW designed
with interaction and
feedback

�Final partitioning after
evaluation of trade-offs

Requires
�Co-specification
�Co-development (Co-

synthesis)
�Co-verification

99/09/07 HW/SW Co-design 11

Goals

�Reduced time to market
�Better products
�Lower development costs
�Lower number of design cycles
�Higher level of abstraction
�Volume specific targets

99/09/07 HW/SW Co-design 12

Tools

�Design framework
�Common specifications
�Silicon compilers
�Software compilers
�Real-time kernels
�Simulators
�Analysis tools

99/09/07 HW/SW Co-design 13

Disciplines

�Application domain
�Specification and programming languages
�Compilers (!)
�VLSI design
�Parallel/distributed systems
�Real-time systems
�Formal methods
�(Performance) analysis

99/09/07 HW/SW Co-design 14

Specification

�Provide clear and unambiguous description
�Allow CAD tools
�Should not constrain implementation in either SW or HW
�To be compiled to other languages for HW (VHDL) or

SW (C)
�Executable to verify if requirements are met

99/09/07 HW/SW Co-design 15

Computation models

Control dominated
�Finite State Machines

(FSM)
�Communicating

Sequential Processes
(CSP)

�Discrete event models
(VHDL)

�Petri nets

Data dominated
�Control flow graphs
�Data flow graphs
�Control/Data flow graphs

99/09/07 HW/SW Co-design 16

Co-simulation

Simulation of systems with
a mix of different kinds of
SW and HW components

Levels
�High abstraction
�Instructions
�ASIC models
�Gate
�Switch
�Analogue

99/09/07 HW/SW Co-design 17

Compilers

Front-end
(target independent)

�Scanning
�Parsing
�Static semantic analysis
�Optimization

Back-end
(source independent)

�Optimization
�Code generation

99/09/07 HW/SW Co-design 18

Code generation

�Currently often separate
�Characteristics of DSP’s and ASIPs make these three

subtasks mutually dependent
�Coupling necessary for generation of optimal code

1. Instruction selection
2. Register allocation
3. Instruction scheduling

99/09/07 HW/SW Co-design 19

Characteristics of DSP’s

�Harvard
�Multiple busses with restricted connectivity
�High I/O-rate
�Irregular register sets of different sizes
�Special purpose registers
�Special registers for zero-overhead loops
�Multiply-add-accumulate in one instruction
�Fixed-point operations
�Hardware supported addressing modes

99/09/07 HW/SW Co-design 20

Example: Data path ADSP210x

MR

MF
MX MY

*
+,-

AR

AF
AX AY

+,-,..

D
P

yi-1[j]

x[j-i]

x[j-i]*a[i]

a[i]

Address
generation unit
(AGU)

Address-
registers
A0, A1, A2 ..
i+1, j-i+1

a
x

∀∀∀∀ i: 0≤≤≤≤i ≤≤≤≤ n: yi[j] = yi-1[j] + x[j-i]*a[i]

99/09/07 HW/SW Co-design 21

Compiler back-ends for DSP’s

Very hard to generate sufficiently efficient code

�Intensive optimization required
�Coupling of three subtasks
�Long compilation time acceptable

99/09/07 HW/SW Co-design 22

Compiler back-ends for ASIP’s

�ASIP’s often have characteristics of DSP’s
�Specific code generator required
�Retargetable code generators
�Code generator must be generated automatically from

description of processor
�From register description and instruction set (behavior)
�From structure of ASIP data path as generated by high level

synthesis (structure)

