FUNDAMENTAL PROBLEMS AND ALGORITHMS

© Giovanni De Micheli Stanford University

Branch and bound algorithm for covering Reduction strategies

- Partitioning:
- If \mathbf{A} is block diagonal:
- Solve covering problem for corresponding blocks.
- Essentials:
- Column incident to one (or more) row with single 1:
- Select column.
- Remove covered row(s) from table.

> Discuss the historic example of essential subset and function core

Branch and bound algorithm for covering. Reduction strategies

- Column dominance:

-If $\mathrm{a}_{\mathrm{ki}} \geq \mathrm{a}_{\mathrm{kj}} \forall \mathrm{k}$:

- remove column j .
- Row dominance:
- If $\mathrm{a}_{\mathrm{ik}} \geq \mathrm{a}_{\mathrm{jk}} \forall \mathrm{k}$:
- Remove row i .

(a)

(b)

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \begin{aligned}
& \mathrm{a} \\
& \mathrm{~b} \\
& \mathrm{c} \\
& \mathrm{~d} \\
& \mathrm{e}
\end{aligned}
$$

Example reduction

- Fourth column is essential.
- Fifth column is dominated.
- Fifth row is dominant.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

EXACT COVER(A; x; b) f
Branch and
Reduce matrix A and update corresponding x;
if (Current est i mate j bj) return(b);
if (A has no rows) return (x);
Select a branching column c;
$\mathrm{xc}=1$;
e
$\mathbf{A}=\mathbf{A}$ after deleting c and rows incident to it;
e
$\mathbf{x}=$ EXACT COVER(
e
A; x; b);
if $(\mathrm{j}$
e
$\mathrm{xj}<\mathrm{j} b \mathrm{~b})$
b $=$
e
\mathbf{x};
xc $=0$;
e
$\mathbf{A}=\mathbf{A}$ after deleting c ;
e
$\mathbf{x}=E X A C T$ COVER(
e
A; x; b);
if $(\mathrm{j}$
bound covering algorithm
$\mathbf{A}=\mathbf{A}$ after deleting c and rows incident to it;
$\mathbf{x}=E X A C T$ COVER(
e
; ; b);
f $(\mathrm{j}$
$\mathrm{xj}<\mathrm{j}$ bj)
b $=$
e
\mathbf{x};
xc $=0$;
e
$\mathbf{A}=\mathbf{A}$ after deleting c ;
$\mathbf{x}=E X A C T$ COVER(
e
e

Bounding function

- Estimate lower bound on the covers derived from the current x.
- The sum of the ones in x, plus bound on cover for local A:
- Independent set of rows:
- No 1 in same column.
- Build graph denoting pair-wise independence.
- Find clique number.
- Approximation by defect is acceptable.

Example

$A=\left(\begin{array}{lll}1 & 01 & 00 \\ 1 & 10 & 01 \\ 0 & 11 & 01 \\ 0 & 00 & 10 \\ 0 & 1 & 1\end{array} 10\right.$

- Row 4 independent from 1,2,3.
- Clique number is 2 .
- Bound is 2.

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Example

- There are no independent rows.
- Clique number is 1 (one vertex).
- Bound is $1+1$ (already selected essential).

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Example

- Choose first column:
- Recur with $\overline{\mathbf{A}}=[11]$.
- Delete one dominated column.
- Take other column (essential).
- New cost is 3 .
- Exclude first column:
- Find another solution with cost 3 (discarded).

Unate and binate cover

- Set covering problem:
- Involves a unate clause.
- Covering with implications:
- Involves a binate clause.
- Example:
- The choice of an element implies the choice of another element.

Unate and binate covering problems

- Unate cover:
-Exact minimization of Boolean functions.
- Binate cover:
-Exact minimization of Boolean relations.
-Exact library binding.
-Exact state minimization.

Unate and binate covering problems

- Unate cover:
- It always has a solution.
- Adding and element to a feasible solution preserves feasibility.
- Binate cover:
- It may not have a solution.
- Adding and element to a feasible solution may make it unfeasible.
- Minimum-cost satisfiability problem.
- Intrinsically more difficult.

Algorithms for unate and binate covering

- Branch and bound algorithm:
- Extended to weighted covers.
- More complex in the binate case:
- Dominant clauses can be discarded only if weight dominates.
- Harder to bound.

Only problems of smaller size are solvable, comparing to unate.
Heuristic for binate cover are also more difficult to develop.

Discuss unate functions and they role
If time allows discuss symmetric functions and they role

