
MODELING LANGUAGES
AND

ABSTRACT MODELS

© Giovanni De Micheli
Stanford University

Chapter 3 in book,
please read it.

OutlineOutline
• Hardware modeling issues:
• Representations and models.
• Issues in hardware languages.
• Abstract hardware models:

– Data flow and sequencing graphs.

Circuit modelingCircuit modeling

• Formal methods:
– Models in hardware languages.
– Flow and state diagrams.
– Schematics.

• Informal methods:
– Principles of operations.
– Natural-language descriptions.

Hardware Description Languages

• Specialized languages with hardware
design support.

• Multi-level abstraction:
– Behavior, RTL, structural.

• Support for simulation.
• Try to model hardware as designer

likes to think of it.

Software programming languages

• Software programming languages (C) can model
functional behavior.
–– Example:Example: processor models.

• Software language models support marginally design
and synthesis.
– Unless extensions and overloading is used.
– Example: SystemC.

• Different paradigms for hardware and software.
• Strong trend in bridging the gap between software

programming languages and HDLs.

Hardware versus software models
• Hardware:

– Parallel execution.
– I/O ports, building blocks.
– Exact event timing is very important.

• Software:
– Sequential execution (usually).
– Structural information less important.
– Exact event timing is not important.

Language analysis
• Syntax:

– External look of a language.
– Specified - by a grammar.

• Semantics:
– Meaning of a language.
– Different ways of specifying it.

• Pragmatics:
– Other aspects of the language.
– Implementation issues.

Language analysis

• Procedural languages:
– Specify the action by a sequence of steps.
– Examples: C, Pascal, VHDL, Verilog.

• Declarative languages:
– Specify the problem by a set of

declarations.
– Example:Example: Prolog.

Language analysis
• Imperative semantics:

– Dependence between the assignments and the
values that variables can take.

–– Examples:Examples: C, Pascal.
• Applicative semantics:

– Based on function invocation.
–– Examples:Examples: Lisp, Silage.

Hardware languages and views
• Physical view:

– Physical layout languages.
– Declarative or procedural.

• Structural view:
– Structural languages.
– Declarative (with some procedural features).

• Behavioral view:
– Behavioral languages.
– Mainly procedural.

Summary

• Hardware synthesis requires specialized language support.
• VHDL and Verilog HDL are mainly used today:

– Similar features.
– Simulation-oriented.

• Synthesis from programming languagesSynthesis from programming languages is also possible.
– Hardware and software models of computation are different.

– Appropriate hardware semantics need to be associated
with programming languages.

• Abstract models:
– Capture essential information.
– Derivable from HDL models.
– Useful to prove properties.

Structural view

• Composition of blocks.
• Encoding of a schematic.
• Incidence structure.
• Hierarchy and instantiation.
• HDL examples:

– VHDL, Verilog HDL, ...

Example
(half adder)

Verilog example
structural

representation
module HALF_ADDER (a , b ,

carry ,sum);
 input a , b;
 output carry, sum;
 and
 g1 (carry, a , b);
 xor
 g2 (sum, a , b);
endmodule

Behavioral view
procedural languages

• Set of tasks with partial order.
– Logic-level:

• Tasks: logic functions.

– Architectural-level:
• Tasks: generic operations.

• Independent of implementation choices.
• HDL examplesHDL examples:

– VHDL, Verilog HDL, ...

Verilog example
Behavior of combinational logic circuit

module HALF_ADDER (a , b , carry , sum);
 input a , b;
 output carry, sum;
 assign carry = a & b ;
 assign sum = a ^ b ;
endmodule

Stands for exor
operator

Verilog example
behavior of sequential logic circuit

module DIFFEQ (x, y, u , dx, a, clock, start);
input [7:0] a, dx;
inout [7:0] x, y, u;
input clock, start;
reg [7:0] xl, ul, yl;
always
 begin begin
 wait (start);
 while (x < a)
 begin
 xl = x + dx;
 ul = u - (3 * x * u * dx) - (3 * y * dx);
 yl = y + (u * dx);
 @(posedge clock);
 x = xl; u = ul ; y = yl;
 end
endmodule

Behavioral view declarative languages

• Combinational circuits:
– Set of untimed assignments.
– Each assignment represents a virtual logic gate.
– Very similar to procedural models.

• Sequential circuits:
– Use timing annotation for delayed signals.
– Set of assignments over (delayed) variables.

Silage example

Silage example

Issues in hardware languages

• Mixing behavior and structure.
– Controlling some implementation details.

• Primitive elements and variable
semantics.
– Multiple-assignment problem.

• Timing semantics.
– Synthesis policies.

Behavior versus structure

• Express partitions in design.
• Pure behavior is hard to specify.

– I/O ports imply a structure.
– Hierarchy may imply structure.

• Hybrid representations.

Example

• Pipelined processor design
• Pipeline is an implementation issue.
• A behavioral representation should not

specify the pipeline.
• Most processor instruction sets are conceived

with an implementation in mind.
• The behavior is defined to fit an

implementation model.

Hardware primitives

• Hardware basic units:
– Logic gates.
– Registers.
– Black-boxes (e.g. complex units, RAMs).

• Connections.
• Ports.

Semantics of variables

• Variables are implemented in hardware by:
– Registers.
– Wires.

• The hardware can store information or not.
• Cases:

– Combinational circuits.
– Sequential circuits.

Semantics of variables

• Combinational circuits.
• Multiple-assignment to a variable.
• Conflict resolution.

– Oring (YLL).
– Last assignment.

Semantics of variables

• Sequential circuits.
• Multiple-assignment to a variable.
• Variable retains its value until reassigned.
• Problem:

– Variable propagation and observability.

Example

• Multiple reassignments:
– x= 0 ; x = 1 ; x = 0 ;

• Interpretations:
– Each assignment takes a cycle. --> pulse.
– x assumes value 0.
– x assumes value 0 after a short glitch.

Timing semantics

• Most procedural HDLs specify a partial order
among operations.

• What is the timing of an operation?
– A posteriori model:

• Delay annotation.

– A priori model:
• Timing constraints.
• Synthesis policies.

Timing semantics
(event-driven semantics)

• Digital synchronous implementation.
• An operation is triggered by some event:

– If the inputs to an operation change
 --> the operation is re-evaluated.

• Used by simulators for efficiency reasons.

Synthesis policy
for VHDL and Verilog

• Operations are synchronized to a clock by
using a wait (or @) command.

• Wait and @ statements delimit clock
boundaries.

• Clock is a parameter of the model:
– model is updated at each clock cycle.

Verilog example
behavior of sequential logic circuit

module DIFFEQ (x, y, u , dx, a, clock, start);
input [7:0] a, dx;
inout [7:0] x, y, u;
input clock, start;
reg [7:0] xl, ul, yl;
always
 begin begin
 wait (start);
 while (x < a)
 begin
 xl = x + dx;
 ul = u - (3 * x * u * dx) - (3 * y * dx);
 yl = y + (u * dx);
 @(posedge clock);
 x = xl; u = ul ; y = yl;
 end
endmodule

Abstract models

• Models based on graphs.
• Useful for:

– Machine-level processing.
– Reasoning about properties.

• Derived from language models by compilation.

Abstract models
Examples

• Netlists:
– Structural views.

• Logic networks
– Mixed structural/behavioral views.

• State diagrams
– Behavioral views of sequential logic models.

• Dataflow and sequencing graphs.
– Abstraction of behavioral models.

Data flow graphs

• Behavioral views of architectural models.
• Useful to represent data-paths.
• Graph:

– Vertices = operations.
– Edges = dependencies.

DataflowDataflow Example Example

xl = x + dx
ul = u - (3 * x * u * dx) - (3 * y * dx)
yl = y + u * dx
c = xl < a

Examplexl = x + dx
ul = u - (3 * x * u *

dx) - (3 * y * dx)
yl = y + u * dx
c = xl < a

Sequencing graphs

• Behavioral views of architectural models.
• Useful to represent data-path and control.
• Extended data flow graphs:

• Operation serialization.
• Hierarchy.
• Control- flow commands:

• branching and iteration.
• Polar: source and sink.

Example

Example of HierarchyExample of Hierarchy

Example of branching

Example of iteration
diffeq {
read (x; y; u; dx; a);
 repeat {
 xl = x +dx;
 ul = u - (3 * x * u* dx) - (3 * y * dx);
 yl = y +u dx;
 c = x < a;
 x = xl; u = ul; y = yl;
 }
 until (c) ;
write (y);
}

Example of iteration

Semantics of sequencing graphs

• Marking of vertices:
– Waiting for execution.
– Executing.
– Have completed execution.

• Execution semantics:
– An operation can be fired as soon as all its

immediate predecessors have completed
execution

Vertex attributes
• Area cost.
• Delay cost:

– Propagation delay.
– Execution delay.

• Data-dependent execution delays:
– Bounded (e.g. branching).
– Unbounded (e.g. iteration, synchronization).

Properties of sequencing graphs
• Computed by visiting hierarchy bottom-up.
• Area estimateArea estimate:

– Sum of the area attributes of all vertices.
– Worst-case - no sharing.

• Delay estimateDelay estimate (latency):
– Bounded-latency graphs.
– Length of longest path.

Summary
• Hardware synthesis requires specialized language support.

– VHDL and Verilog HDL are mainly used today:
• Similar features.
• Simulation-oriented.

• Synthesis from programming languages is also possible.
– Hardware and software models of computation are different.
– Appropriate hardware semantics need to be associated with

programming languages.

• Abstract models:
– Capture essential information.

– Derivable from HDL models.
– Useful to prove properties.

