
State Minimization:

Completely Speci�ed Machines

STGs may contain redundant states, i.e. states whose

function can be accomplished by other states.

State minimization is the transformation of a given

machine into an equivalent machine with no redundant

states.

1

State Minimization:

Completely Speci�ed Machines

Two states, si and sj of machine M are distinguishable

if and only if there exists a �nite input sequence which

when applied to M causes di�erent output sequences

depending on whether M started in si or sj.

Such a sequence is called a distinguishing sequence

for (si; sj). If there exists a distinguishing sequence of

length k for (si; sj), they are said to be k- distinguish-

able.

PS NS, z

x = 0 x = 1

A E, 0 D, 1

B F, 0 D, 0

C E, 0 B, 1

D F, 0 B, 0

E C, 0 F, 1

F B, 0 C, 0

Example:

� states A and B are 1-distinguishable, since a 1

input applied to A yields an output 1, versus an

output 0 from B.

� states A and E are 3-distinguishable, since input

sequence 111 applied to A yields output 100, ver-

sus an output 101 from B.

2

State Minimization:

Completely Speci�ed Machines

States si and sj are said to be equivalent i� no distin-

guishing sequence exists for (si; sj).

If si is equivalent to sj and sj is equivalent to sk, then

si is equivalent to sk. So state equivalence is an equiv-

alence relation (i.e. it is a reexive, symmetric and

transitive relation).

An equivalence relation partitions the elements of a set

into equivalence classes.

Property. If si and sj are equivalent states, their corre-

sponding X-successors, for all inputs X, are also equiv-

alent.

Procedure: Partition states of M so that two states are

in the same equivalence class i� they are equivalent.

3

State Minimization:

Completely Speci�ed Machines

PS NS, z

x = 0 x = 1

A E, 0 D, 1

B F, 0 D, 0

C E, 0 B, 1

D F, 0 B, 0

E C, 0 F, 1

F B, 0 C, 0

Pi: partition using distinguishing sequences of length i.

Partition Distinguishing Sequence

P0 = (A B C D E F)

P1 = (A C E) (B D F) x = 1

P2 = (A C E) (B D) (F) x = 1;x = 1

P3 = (A C) (E) (B D) (F) x = 1;x = 1;x = 1

P4 = (A C) (E) (B D) (F)

Algorithm terminates when Pk = Pk+1.

4

State Minimization:

Completely Speci�ed Machines

Outline of state minimization procedure:

� All states equivalent to each other form an equiv-

alence class. All the states in an equivalence class

may be combined into one state in the reduced

(quotient) machine.

� These equivalence classes form a partition of the

set of states.

� Start with all states in a partition of a single block.

Iteratively re�ne this partition by separating the 1-

distinguishable states, 2-distinguishable states and

so on.

� In general, when obtaining Pk+1 from Pk, place in

the same block of Pk+1 the states that are (k+1)-

equivalent, and in di�erent blocks states that are

(k+1)-distinguishable.

5

State Minimization:

Completely Speci�ed Machines

Theorem. The equivalence partition is unique.

Theorem. If two states, si and sj, of machine M

are distinguishable, then they are distinguishable by a

sequence of length n�1 or less, where n is the number

of states in M.

De�nition: Two machines, M1 and M2, are said to be

equivalent i�, for every state in M1 there is a corre-

sponding equivalent state in M2 and vice versa.

Theorem. For every machine M there is a minimal

machine Mred that is equivalent to M and is unique up

to isomorphism.

Reduced machine obtained from previous example:

PS NS, z

x = 0 x = 1

� �, 0 , 1

� �, 0 �, 1

 �, 0 , 0

� , 0 �, 0

6

State Minimization of CSMs: Complexity

Algorithm DFA ; DFAmin
Input: A �nite automaton M = (Q;�; �; q0; F) with no

unreachable states.

Output: A minimal �nite automatonM 0 = (Q0
;�; �0; q00; F

0).

Method:

1. t := 2;Q0 := f unde�ned g;Q1 := F ;Q2 := Q n F .

2. while there is 0 < i � t, a 2 � with �(Qi; a) 6� Qj,

for all j � t

do

(a) Choose such an i, a 2 �, and j � t with

�(Qi; a) \Qj 6= ;.

(b) Qt+1 := fq 2 Qi j �(q; a) 2 Qjg;

Qi := Qi nQt+1;

t := t+ 1.

do.

3. (* Let [q] denote the equivalence class the state

q is in and fQig denote the set of all equivalence

classes. *)

Q
0 := fQ1; Q2; : : : ; Qtg:

q
0
0 := [q0]:

F
0 := f[q] 2 Q

0jq 2 Fg:

�
0([q]; a) := [�(q; a)] for all q 2 Q, a 2 �.

7

State Minimization of CSMs: Complexity

Standard Implementation: O(kn2), where n = jQj and

k = j�j

Modi�cation of the body of the while loop:

1. Choose such an i, a 2 �, and choose j1; j2 � t with

j1 6= j2, �(Qi; a) \Qj1
6= ;, and �(Qi; a) \Qj2

6= ;.

2. If jfq 2 Qi j �(q; a) 2 Qj1
gj � jfq 2 Qi j �(q; a) 2

Qj2
gj

then Qt+1 := fq 2 Qi j �(q; a) 2 Qj1
g

else Qt+1 := fq 2 Qi j �(q; a) 2 Qj2
g �;

Qi := Qi nQt+1;

t := t+1.

Note: jQt+1j � 1=2jQij. Therefore, for all q 2 Q the

name of the class which q contains changes at most

logn times.

Goal: Develop an implementation such that all work

can be assigned to transitions containing a state for

whcih the name of the corresponding class is changed.

Suitable data structures achieve an O(kn log n) imple-

mentation

Details in N. Blum IPL '96 [Original O(kn log n) algo-

rithm in Hopcroft 1971]

8

State Minimization of CSMs: BDD Im-

plementation

E0(x; y) =

jSjY

i=1

(xi � yi)

Ej+1(x; y) = Ej(x; y) ^

8i9(o; z; w)[T (x; i; z; o) ^

T (y; i; w; o) ^Ej(z; w)]

9

State Minimization: Incompletely Speci-
�ed Machines

Statement of the problem: given an incompletely spec-

i�ed machine M, �nd a machine M
0 such that:

� on any input sequence, M 0 produces the same out-

puts as M, whenever M is speci�ed.

� no machine M
00 with fewer states than M

0 does

the job.

10

State Minimization: Incompletely Speci-
�ed Machines

Machine M:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, - s3, 0

s3 s3, 1 s2, 0

� Attempt to reduce this case to usual state mini-

mization of completely speci�ed machines.

� Force the don't cares to all their possible values

and choose the smallest of the completely speci-

�ed machines so obtained.

In our case it means to state minimize two completely

speci�ed machines obtained from M, by setting the

don't care to either 0 or 1.

11

State Minimization: Incompletely Speci-
�ed Machines

Suppose that the � is set to be a 0.

Machine M
0:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 0 s3, 0

s3 s3, 1 s2, 0

States s1 and s2 are equivalent if s3 and s2 are equiva-

lent, but s3 and s2 assert di�erent outputs under input

0, so s1 and s2 are not equivalent.

States s1 and s3 are not equivalent either.

So this completely speci�ed machine cannot be re-

duced further.

12

State Minimization: Incompletely Speci-
�ed Machines

Suppose that the � is set to be a 1.

Machine M
00:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 1 s3, 0

s3 s3, 1 s2, 0

States s1 is incompatible with both s2 and s3.

States s3 and s2 are equivalent.

So number of states is reduced from 3 to 2.

Machine M
00
red

:

PS NS, z

x = 0 x = 1

A A, 1 A, 0

B A, 0 A, 0

13

State Minimization:

Incompletely Speci�ed Machines

Can this always be done?

Machine M:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, - s1, 0

s3 s1, 1 s2, 0

14

State Minimization:

Incompletely Speci�ed Machines

Machine M2:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 0 s1, 0

s3 s1, 1 s2, 0

Machine M3:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 1 s1, 0

s3 s1, 1 s2, 0

Machines M2 and M3 are formed by �lling in the un-

speci�ed entry in M with 0 and 1, respectively.

Both machines M2 and M3 cannot be reduced.

Conclusion: M cannot be minimized further!

But is it a correct conclusion?

15

State Minimization:

Incompletely Speci�ed Machines

Notice that we want to 'merge' two states when, for

any input sequence, they generate the same output se-

quence, but only where both outputs are speci�ed.

This suggests the notion of a compatible set of states:

a set of states that agree on the outputs where they

are all speci�ed.

Machine M:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, - s1, 0

s3 s1, 1 s2, 0

In this case we have two compatible sets: A = (s1,s2)

and B = (s3,s2). A reduced machine Mred can be built

as follows.

Machine Mred:

PS NS, z

x = 0 x = 1

A B, 0 A, 0

B A, 1 A, 0

16

State Minimization:

Incompletely Speci�ed Machines

Can we simply look for a set of compatibles of minimum

cardinality, such that any original state is in at least one

compatible? (This would be nice since it would lead

to a simple unate covering problem.)

No. To build a reduced machine we must be able

to send compatibles into compatibles. So choosing a

given compatible may imply that some other compati-

bles must be chosen too.

PS NS, z

I1 I2 I3 I4

s1 s3,0 s1,- - -

s2 s6, - s2, 0 s1, - -

s3 -, 1 -, - s4, 0 -

s4 s1,0 -, - - s5, 1

s5 -, - s5, - s2, 1 s1, 1

s6 -, - s2, 1 s6, - s4, 1

A set of compatibles that cover all states is: (s3s6) ,

(s4s6) , (s1s6) , (s4s5) , (s2s5). But (s3s6) requires

(s4s6), (s4s6) requires (s4s5), (s4s5) requires (s1s5),

(s1s6) requires (s1s2), (s1s2) requires (s3s6), (s2s5)

requires (s1s2). So, this selection of compatibles re-

quires too many other compatibles...

17

State Minimization:

Incompletely Speci�ed Machines

PS NS, z

I1 I2 I3 I4

s1 s3,0 s1,- - -

s2 s6, - s2, 0 s1, - -

s3 -, 1 -, - s4, 0 -

s4 s1,0 -, - - s5, 1

s5 -, - s5, - s2, 1 s1, 1

s6 -, - s2, 1 s6, - s4, 1

Another set of compatibles that covers all states is

(s1s2s5), (s3s6), (s4s5). But compatible (s1s2s5) re-

quires (s3s6), (s3s6) requires (s4s6) (which requires

(s4s5)) and (s4s5) requires (s1s5). So must select

also compatible (s4s6).

Selection of minimum set of compatibles closed with

respect to next state implication is a binate covering

problem !!!

18

State Minimization:

Incompletely Speci�ed Machines

More formally:

When a next state in unspeci�ed, the future behaviour

of the machine is unpredictable. This suggests the

de�nition of admissible input sequence.

De�nition. An input sequence is admissible, or appli-

cable, for a starting state of a machine if no unspeci�ed

next state is encountered, except possibly at the �nal

step.

De�nition. State si of machine M1 is said to cover, or

contain, state sj of M2 provided every input sequence

applicable to sj is also applicable to si, and its appli-

cation to both M1 and M2 when they are initially in si
and sj, results in identical output sequences whenever

the outputs of M2 are speci�ed.

De�nition. Machine M1 is said to cover machine M2

i�, for every state sj in M2, there is a corresponding

state si in M1 such that si covers sj.

The problem of state minimization for an incompletely

speci�ed machine M is to �nd a machine M
0 which

covers M such that for any other machine M
00 which

covers M, the number of states of M 0 does not exceed

the number of states of M 00.

19

State Minimization:

Incompletely Speci�ed Machines

Machine M:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, - s1, 0

s3 s1, 1 s2, 0

Machine M
0:

PS NS, z

x = 0 x = 1

A B, 0 A, 0

B A, 1 A, 0

State A of M 0 covers states s1 and s2 of M and state

B of M 0 covers states s2 and s3 of M. Therefore M
0

covers M.

Note that M started in s1 under input sequence 1 0

0 generates 0 - -, while M
0 started in A under input

sequence 1 0 0 generates 0 0 1.

The output generated byM 0 corresponding to the don't

care entry in M is not always the same !!!

20

State Minimization:

Incompletely Speci�ed Machines

Machine M2:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 0 s1, 0

s3 s1, 1 s2, 0

Machine M3:

PS NS, z

x = 0 x = 1

s1 s3, 0 s2, 0

s2 s2, 1 s1, 0

s3 s1, 1 s2, 0

M2 andM3 are formed by �lling in the unspeci�ed entry

in M with 0 and 1, respectively. Neither state A nor B

of M 0 covers state s2 of M2 or M3 and hence M 0 would

not cover M2 or M3.

21

State Minimization:

Incompletely Speci�ed Machines

If machine M can be covered by M
0 containing fewer

states than M, then some state of M 0 must cover more

than one state of M. If a set of states of M can be

covered by the same state of M 0, this set is called a

compatible set.

Intuitively: the states in a compatible set can be com-

bined into a single state in the reduced machine.

De�nition: States si and sj are compatible i� they

never generate di�erent speci�ed output sequences for

any admissible input sequence.

Example:

PS NS, z

I1 I2 I3 I4

A - - E, 1 -

B C, 0 A, 1 B, 0 -

C C, 0 D, 1 - A, 0

D - E, 1 B, - -

E B, 0 - C, - B, 0

(AC) is a compatible pair, (AD) is a compatible pair

if and only if (BE) is a compatible pair. (ACD) is a

compatible set.

22

State Minimization:

Incompletely Speci�ed Machines

A set of states is compatible if and only if every pair

of states in that set is compatible.

(BC) is a compatible pair, (AC) is a compatible pair,

but (AB) is not compatible pair, so (ABC) is not a

compatible set.

The compatibility relation is not an equivalence relation!

23

State Minimization:

Incompletely Speci�ed Machines

Compatible sets are computed as those sets of states

that do not contain any incompatible pair of states.

States si and sj are incompatible i� they are not com-

patible.

De�nition: States si and sj are output incompatible i�

9ik such that �(ik; si) 6= �(ik; sj), if both � are speci�ed.

The set of all pairs of incompatible states can be com-

puted as follows:

1. Compute output incompatible pairs.

2. Add any pair of states (si; sj) if 9ik such that

(�(ik; si); �(ik; sj)) is a previously determined in-

compatible pair of states.

3. Repeat 2. until no new pairs can be added to the

incompatible state pairs set.

24

State Minimization:

Incompletely Speci�ed Machines

Example:

PS NS, z

I1 I2 I3 I4

A - - E, 1 -

B C, 0 A, 1 B, 0 -

C C, 0 D, 1 - A, 0

D - E, 1 B, - -

E B, 0 - C, - B, 0

Compatibles of example:

C1 = (BE),

C2 = (AD),

C3 = (CD),

C4 = (BC),

C5 = (ACD),

C6 = (DE),

C7 = (AC),

C8 = (A),

C9 = (B),

C10 = (C),

C11 = (D),

C12 = (E).

25

State Minimization:

Incompletely Speci�ed Machines

A class of compatibles is of special interest: maximal

compatibles.

Sets of compatible states which are not subsets of any

other compatible set of states are called maximal com-

patibles.

In the case of completely speci�ed machines, each

equivalence class is a maximal compatible.

Maximal compatibles of previous example:

(BE), (BC), (ACD), (DE).

If machine M is to be reduced to M
0, the states of M 0

must correspond to compatible sets of states of M. If

a state of M 0 corresponds to a compatible set Ci, then

the next state of M 0 under input Ij must correspond

to some compatible set Cm such that the next state

entries in M under Ij of all states in Cj are contained

in Cm. (Why is this?)

26

State Minimization:

Incompletely Speci�ed Machines

De�nition:

If Ci is a set of compatible states and

Cij = fskjsk = �(Ij; si) , andsi 2 Cig

i.e. Cij is the set of next states of the states in Ci for

input Ij, then Cij is said to be implied by the set Ci
for input Ij.

De�nition:

Let Ci be a compatible set of states and Cij be the set

of next states implied by Ci for input Ij.

Cij = fsk j sk = �(Ij; sl); sl 2 Cig

The sets Cij implied by Ci for all inputs Ij are the

implied classes of Ci.

De�nition:

A set of compatible sets C = fC1; C2; :::g is closed if

for every Ci 2 C all the implied sets Cij are contained

in some element of C for all inputs Ij.

27

State Minimization:

Incompletely Speci�ed Machines

The problem of minimizing the number of states re-

duces to �nding a closed set C of compatible states,

of minimum cardinality, which covers every state of the

original machine, i.e. a minimum closed cover.

Note that:

1. The set of all maximal compatibles of a completely

speci�ed FSM is the unique minimum closed cover.

2. For an incompletely speci�ed FSM, a closed cover

consisting of maximal compatibles only, may be a

larger cover than a closed cover in which some or

all of the compatibles are not maximal.

This is because each compatible has a di�erent set

of implied compatibles, and removing a state from

a compatible may result in an implied compatible

that is already there, rather than a new one.

This means that we may have to search over the

set of all compatibles to �nd the minimum cover.

28

State Minimization:

Incompletely Speci�ed Machines

But the set of all compatibles is a very large set. Is

there a smaller set of compatibles (larger than the set

of all maximal compatibles) that guarantees �nding a

minimum closed cover ?

Yes. Prime compatibles (Grasselli and Luccio, 1965)

De�nition: A compatible set of states that is not

\dominated" by any other compatible set is called a

prime compatible set.

De�nition similar to that for prime implicants of logic

functions. Of course here one must specify what is

meant by dominance of a compatible.

29

State Minimization:

Incompletely Speci�ed Machines

Let Ci be a compatible set of states, and Cij be the

set of next states implied by Ci for input Ij.

De�nition: The class set Pi implied by Ci is the set of

all Cij implied by Ci for all inputs Ij such that:

1. Cij has more than one element

2. Cij 6� Ci

3. Cij 6� Cik if Cik 2 Pi

De�nition: A compatible Ci dominates a compatible

Cj if

1. Ci � Cj, and

2. Pi � Pj

i.e. Ci dominates Cj if Ci covers all states covered by

Cj and the conditions on the closure of Ci are a subset

of the conditions on the closure of Cj.

De�nition: A compatible set of states that is not dom-

inated by any other compatible set is called a prime

compatible set.

30

State Minimization:

Incompletely Speci�ed Machines

Example:

PS NS, z

I1 I2 I3 I4

A - - E, 1 -

B C, 0 A, 1 B, 0 -

C C, 0 D, 1 - A, 0

D - E, 1 B, - -

E B, 0 - C, - B, 0

Prime compatibles and respective class sets:

p1 = (BE); f(CB)g;

p2 = (AD); f(BE)g;

p3 = (CD); f(ED)g;

p4 = (BC); f(DA)g;

p5 = (ACD); f(ED)(BE)g;

p6 = (DE); f(BC)g;

p7 = (AC); fg;

p9 = (B); fg;

p11 = (D); fg;

p12 = (E); fg:

31

State Minimization:

Incompletely Speci�ed Machines

The following procedure computes all prime compati-

bles. At the beginning, the set of prime compatibles is

empty.

1. Order the maximal compatibles by decreasing size,

say n is the size of the largest.

2. Add to the set of prime compatibles the maximal

compatibles of size n.

3. For i= 1 to n� 1:

(a) Generate all compatibles of size n� i and com-

pute their implied classes.

The compatibles of size n � i are generated

starting from the maximal compatibles of size

n to n � i+ 1 (only those that do not have a

void class set).

(b) Add to the set of primes the compatibles of

size n � i not dominated by any prime already

in the set.

(c) Add to the set of primes all maximal compati-

bles of size n� i.

32

State Minimization:

Incompletely Speci�ed Machines

The following facts are true:

� A compatible already added to the set of primes,

cannot be excluded by a newly generated compat-

ible.

� In the previous algorithm, the same compatible can

be generated more than once by di�erent maximal

compatibles. The question arises of �nding the

most e�cient algorithm to generate the compati-

bles.

� Only the compatibles generated frommaximal com-

patibles with non-empty class set need be consid-

ered, because a maximal compatible with an empty

class set dominates any compatible that it gener-

ates.

� A single state si can be a prime compatible if every

compatible set Ci with more than one state and

containing si implies a set with more than one

state.

Theorem 1 For any FSMM there is a minimum equiv-

alent FSM Mred whose states all correspond to prime

compatible sets of M.

33

State Minimization:

Incompletely Speci�ed Machines

A minimum closed cover can be determined by �rst

constructing a conjunctive form expression and then

�nding a satisfying assignment to it which has the

fewest variables assigned TRUE.

This is a binate covering problem.

� The table of the problem has columns that corre-

spond to prime compatibles and rows that corre-

spond to covering and closure conditions.

� It can be solved by branch and bound.

� At each step the table is reduced, by eliminating

rows and columns, according to dominance crite-

ria. These generalize the row and column domi-

nance used for solving unate covering problems.

34

State Minimization:
Incompletely Speci�ed Machines

p1 = (BE); f(CB)g;

p2 = (AD); f(BE)g;

p3 = (CD); f(ED)g;

p4 = (BC); f(DA)g;

p5 = (ACD); f(ED)(BE)g;

p6 = (DE); f(BC)g;

p7 = (AC); fg;

p9 = (B); fg;

p11 = (D); fg;

p12 = (E); fg:

Computation of clauses in previous example.

Clauses due to coverage:

A: (p5+ p2+ p7)

B: (p1+ p4+ p9)

C: (p3+ p4+ p5+ p7)

D: (p2+ p3+ p5+ p6+ p11)

E: (p1+ p6+ p12)

Clauses due to closure:

p1) p4: (�p1+ p4)

p2) p1: (�p2+ p1)

p3) p6: (�p3+ p6)

p4) (p2+ p5): (�p4+ p2+ p5)

p5) (p1 � p6): (�p5+ p1)(�p5+ p6)

p6) p4: (�p6+ p4)

35

State Minimization:

Incompletely Speci�ed Machines

Need to �nd a satisfying assignment for the following

expression with the fewest TRUE assignments.

C = (p5+ p2+ p7)(p1+ p4+ p9)(p3+ p4+ p5+ p7)

(p2+ p3+ p5+ p6+ p11)(p1+ p6+ p12)

(�p1+ p4)(�p2+ p1)(�p3+ p6)(�p4+ p2+ p5)

(�p5+ p1)(�p5+ p6)(�p6+ p4):

The assignment p1 = p2 = p4 = TRUE and all other pj =

FALSE is a satisfying assignment with the fewest TRUE

assignments.

36

State Minimization:

Incompletely Speci�ed Machines

This corresponds to Mred = f(B E), (A D), (B C)g

giving the following reduced machine.

PS NS, z

I1 I2 I3 I4

(A D) ! � - , 1 , 1 -

(B C) ! � �, 0 �, 1 �, 0 �, 0

(B E) ! �, 0 �, 1 �, 0 �, 0

Note:

1. Minimum form not unique.

2. A state in the original machine may be split be-

tween two states in the reduced machine.

3. resulting machine may still be incompletely speci-

�ed.

37

State Minimization:

Incompletely Speci�ed Machines

0
1
0
1
0
1
0
1
0
1

A
A
B
B
C
C
D
D
E
E

C
E
C
E
B
A
D
E
D
A

1
-
-
1
0
1
0
1
1
0

(a)

E, A

A, E
B, D

C, D

C, D

A B C D

B

C

D

E

(b)

� An incompletely-speci�ed machine and its implica-

tion table

0
1
0
1
0
1
0
1

(A, B)
(A, B)
C
C
D
D
E
E

C
E
(A, B)
(A, B)
D
E
D
(A, B)

1
1
0
1
0
1
1
0

(a)

0
1
0
1

(A, E)
(A, E)
(B, C, D)
(B, C, D)

(B, C, D)
(A, E)
(B, C, D)
(A, E)

1
0
0
1

(b)

� Two minimal realizations of an incompletely-speci�ed

machine

38

State Minimization:

Incompletely Speci�ed Machines

Problem: An implied class can be contained by more

than one compatible.

Choose as next state in the reduced machine the com-

patible that optimizes some cost function, for instance

the number of rows of the state transition table of the

reduced machine.

In general, de�ne a mapping problem: given a closed

set of compatibles which covers all the states of the

original machine, �nd a mapping of the implied classes

into the compatibles, so as to minimize the cost of the

resulting machine.

The problem can be modeled as the one of determining

the set of unique representatives which minimizes row

count after minimization of a symbolic relation (anal-

ogous to a boolean relation with symbolic input and

output �elds).

39

State Minimization:

Incompletely Speci�ed Machines

Complexity of the problem:

� Problem is NP-hard [Peeger 1973]

� Exact solution requires computing prime compat-

ibles (in the worst-case, order of 3n=3) and then a

binate covering step.

� Existing tools perform well on examples with few

prime compatibles. Are inadequate for examples

with many prime compatibles.

� Newly developed tools use BDD's and implicit meth-

ods (Kam and Villa). They have been shown to

be able to handle some problems with trillions of

prime compatibles. [Kam and Villa have developed

a package called SILK]

40

