$$
\begin{gathered}
\text { State } \\
\text { Assignment } \\
\text { Using } \\
\text { Psirtion Psirs }
\end{gathered}
$$

- Discuss hypercube method, add slides later on

State Assignment Using Partition Pairs

- This method allows for finding high quality solutions but is slow and complicated
Only computer approach is practical
- Definition of Partition.

Set of blocks B_{i} is a partition of set S if the union of all these blocks forms set S and any two of them are disjoint

- B1 u B2 u B3 $\ldots=$ S
$\square B 1 \wedge B 2=\{ \}, B 2 \wedge B 3 \ldots=\{ \}$, etc
Example 1: $\{12,45,36\},\{\{1,2\},\{4,5\},\{3,6\}\}$
Example 2: $\{123,345\}$ not a partition but a set cover

State Assignment Using Partition Pairs

- Definition of X-successor of state S_{a}
- The state to which the machine goes from state S_{a} using input X
\star Definition of Partition Pair
- $\mathbf{P} 1=>\mathbf{P}$ 2 is a partition pair if for every two elements S_{a} and S_{b} from any block in $P 1$ and every input symbol X_{i} the X_{i} successors of states S_{a} and S_{b} are in the same block of $\mathbf{P} 2$

State Assignment Using Partition Pairs

Methods of calculation of Partition Pairs

- Partition pair P1 => P2 calculated with known partition P1
- Partition Pair P1 => P2 calculated with known partition P2

Calculation of successor partition from the

 predecessor partition in the partition pair $\{1,23,45\}=>$???| | \mathbf{X}_{1} | $\mathbf{X}_{\mathbf{2}}$ |
| :--- | ---: | ---: |
| | 2 | 3 |
| $\mathbf{2}$ | 4 | 5 |
| $\mathbf{3}$ | 5 | 4 |
| $\mathbf{4}$ | $\mathbf{1}$ | 1 |
| $\mathbf{5}$ | $\mathbf{1}$ | - |

$$
\overbrace{\frac{1}{2}}^{\text {b) }} \overbrace{\frac{1}{3}}^{\overline{1}} x_{\frac{1}{1}}^{\frac{x_{1}}{45}} \overbrace{\frac{1}{45}}^{\overline{45}}
$$

Calculation of successor partition from the successor partition in the partition pair
Machine M1

$$
\begin{array}{lllll}
\mathrm{x}_{1} & x_{2} & \mathrm{x}_{1} & \mathrm{x}_{2} & \{\text { WHAT??\} }
\end{array}=>\{13,245\}
$$

$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{1}$	$\mathbf{1}$	0
$\mathbf{2}$	4	5	$\mathbf{2}$	$\mathbf{1}$	1
$\mathbf{3}$	5	4	$\mathbf{3}$	1	1
$\mathbf{4}$	1	1	$\mathbf{4}$	0	0
$\mathbf{5}$	$\mathbf{1}$	-	$\mathbf{5}$	0	-

$$
\{1,23,45\} \Rightarrow>13,245\}
$$

Operations on Partitions represented as Multi-lines

$\{\{1\},\{2,3,4,5\}\}+$
$\{\{3\},\{1,2,4,5\}\}=\{\{1,3\},\{2,4,5\}\}$
$\{1,2345\}+\{3,1245\}=\{13,245\}$

Union of images of predecessors

Operations on Partitions represented as Multi-lines

Intersection (called also a product) of partitions
b)

$\{\overline{13}, \overline{4}, \overline{25}\}$

$\{\overline{1}, \overline{3}, \overline{4}, \overline{25}\}$

$\{\overline{1}, \overline{3}, \overline{4}, \overline{25}\}$

Operations on Partitions represented as Multi-lines

-These methods are used to find a good state assignment.
-This means, the assignment that minimizes the total number of variables as arguments of excitation (and output) functions.
-The is a correspondence between the structure of the set of all partition pairs for all two-block (proper) partitions of a machine and the realization
(decomposition) structure of this machine
-Simple pairs lead to simple sulbmachines

Theorem 5.3. If there is transition $\prod_{I}-->\tau_{\mathrm{I}}$ and $\prod_{\mathrm{i}}>=$ $\tau_{\mathrm{s} 1 \ldots . .} \tau_{\mathrm{sn}}$ then D 1 is a logic function of only input signals and flip-flops $\mathrm{Q}_{\mathrm{s} 1} \ldots \mathrm{Q}_{\mathrm{sn}}$

Fig.5.37. Structure of automaton illustrating application of Theorem 5.3

Let us assume D type Flip - Flops

For machine M2 partitions $(1235,4)=\mathrm{T}_{4}$ and $(125,34)=\mathrm{T}_{34}$ are good for y_{1}
Calculation of all partition pairs for
a)

$\mathbf{1}$	1	2
2	1	3
3	4	3
4	5	3
5	1	3

Selection of partitions

Partitions good for output are circled

Selected Partitions

- T_{23} is always good since it has a predecessor of 1
- Out of many pairs of proper partitions from the graph we select partitions T_{34} and T_{45} because they are both good for outputs
- So now we know from the main theorem that the (logic) excitation function of the Flip-flop encoded with partition T_{23} will depend only on input signals and not on outputs of other flip-flops
- We know also from the main theorem that the excitation function of flip-flop encoded with T_{45} will depend only on input signals and flip-flop encoded with partition T_{34}
- The question remains how good is partition T_{34}. It is good for output but how complex is its excitation function? This function depends either on two or three flip-flops. Not one flipflop, because it would be seen in the graph. Definitely it depends on at most three, because the product of partitions $\mathrm{T}_{23} \mathrm{~T}_{34} \mathrm{~T}_{45}$ is a zero partition
- In class we have done calculations following main theorem to evaluate complexity and the result was that it depends on three.
- Please be ready to understand these evaluation calculations and be able to use them for new examples.

Calculation of partition pair graph from multi-line for machine

Select T ${ }_{18}, T_{24}$ and T_{8}

Explain why this is a good choice

Evaluate complexities of all excitation functions. Next calculate the functions from Kmaps and compare. Give final explanation.

Schematic of machine M3 realized using D Flip-Flops

JK flip-flops are very important since they include D and T as special cases - you have to know how to prove it
Relation between excitation functions for D and JK flip-flops

Fig 5.36. Example of excitation function for D and JK
flip-flops

QUESTION: How to do state assignment for JK flip-flops?

Let us first recall excitation tables for JK Flip-flops

\mathbf{Q}	\mathbf{Q}^{+}	\mathbf{J}	\mathbf{K}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	-
$\mathbf{0}$	1	$\mathbf{1}$	-
$\mathbf{1}$	0	-1	
$\mathbf{1}$	1	-	$\mathbf{0}$

for input J
$+$
$*$
ψ_{r}^{0} 米
for input K
*
ϕ
$+{ }_{\mathrm{r}}^{0} \circledast$

Transition 1->0

Obtained from

-	-
0	0
0	0
0	1
0	1

J

Now, thanks to don't cares from J we can write :
$(123,48)-->\mathrm{T}_{1}$
$(23,148)-->\mathrm{T}_{1}$
From K we can write :
transitions

For this task we will adapt the Multi-line method

Rules for State Assignment of JK Flip-Flops

for input J

for input K
*
中

The subsequent stages are the following.

1. From multiline draw the graph of transitions for both J and K inputs.
2. Mark partitions good for output
3. Find partition pairs that simplify the total cost, exactly the same as before.

There fore the multi-line method can be extended for any type of flip-flops and for incompletely specified machines.

Fig.5.43.
Schematic of FSM from Example 5.7 realized with JK Flip-flops

