State Assignment: Rules vs. Partition Pairs

Jacob Boles
Ece 572
Fall 99

Introduction

- In this presentation I will show an example of state assignment by heuristic rules and compare it to the assignment down by partition pairs.
- So that my example is more relevant and unique, I will use the simplified state machine from my project.

CS	NS	
	$X=0$	$X=1$
A	A	B
B	C	F
C	E	D
D	D	E
E	A	A
F	F	C

State Assignment by Rules

- Rule 1
- States with most incoming branches should be assignment least number of 1 's in code.
- This implies that state A which has the most incoming branches by far should be zero. All the other states have about the same number of incoming branches so we take no precedence

$$
\mathrm{A}<=000
$$

State Assignment by Rules

- Rule 2
- State with common next state on the same input condition should be assigned adjacent codes.
- In my example this only occurs for $\mathrm{E} \& \mathrm{C} \& \mathrm{~A}$

E \& C \& A should be adjacent to each other

State Assignment by Rules

- Rule 3
- Next state of same state should be adjacent codes according to adjacency of branch conditions.
- This is a little harder to see but implies ...

A adj. B
Impossible to
do all these with 3 bits!

A adj. D
D adj. E
F adj. C

State Assignment by Rules

- Rule 4
- States that form a chain on same branch should be adjacent codes.

Two chains:
Chain A->B->F->C->D->E Chain B->C->A

State Assignment by Rules

- Our assignment ...

State Assignment by Rules

A 000 B 001 C 010
D 100
E 101
$\mathrm{Q} 2=\mathrm{XA}+[\mathrm{XD}]+\left[\mathrm{X}^{\prime} \mathrm{F}+\mathrm{XB}\right]$

Assuming sharing of common logic:
$\#$ gates $=5+4+3=12$

State Assign. using Partitions

CS	NS	
	$X=0$	$X=1$
A	A	B
B	C	F
C	E	D
D	D	E
E	A	A
F	F	C

(ACDE, B, F$) \longrightarrow \mathrm{T}_{\mathrm{C}}$
$(\mathrm{AB}, \mathrm{CD}, \mathrm{E}, \mathrm{F}) \longrightarrow \mathrm{T}_{\mathrm{AC}}$
$(A D, B F, C, E) \longrightarrow T_{A D}$
$(\mathrm{AC}, \mathrm{BF}, \mathrm{D}, \mathrm{E}) \longrightarrow \mathrm{T}_{\mathrm{AE}}$
$(\mathrm{AF}, \mathrm{B}, \mathrm{CD}, \mathrm{E}) \longrightarrow \mathrm{T}_{\mathrm{AF}}$
$(\mathrm{AF}, \mathrm{B}, \mathrm{CDE}) \longrightarrow \mathrm{T}_{\mathrm{BC}}$

$$
\begin{aligned}
& \text { (AE, BF, CD) } \longrightarrow \mathrm{T}_{\mathrm{CF}} \\
& \text { (ABE, C, D, F) } \longrightarrow \mathrm{T}_{\mathrm{DE}} \\
& \text { (ADE, B, C, F) } \longrightarrow \mathrm{T}_{\mathrm{DF}} \\
& (\mathrm{AE}, \mathrm{BD}, \mathrm{CF}) \longrightarrow \mathrm{T}_{\mathrm{EF}} \\
& \text { (AD, BEF, C, D) } \longrightarrow \mathrm{T}_{\mathrm{BE}} \\
& (\mathrm{~A}, \mathrm{~B}, \mathrm{CEF}, \mathrm{D}) \longrightarrow \mathrm{T}_{\mathrm{BF}} \\
& (\mathrm{AE}, \mathrm{BD}, \mathrm{CF}) \longrightarrow \mathrm{T}_{\mathrm{CD}} \\
& (\mathrm{AE}, \mathrm{BC}, \mathrm{DF}) \longrightarrow \mathrm{T}_{\mathrm{CE}}
\end{aligned}
$$

Not very good partition. Doesn't tell us anything w/o trying every possibility.

Comparison of results

Rules and heuristics

- Easy to do

Advantages

Disadvantages

- Rules may not always hold true
- Inefficient for large variable problems.

Partitioning

- Will always find best solution if given time
- Better than trying every possibility
- More complex
- Can be slow if problem is large or bad partition

