Lecture 18

BUS and **MEMORY**

Slides of Adam Postula used

12/8/2002

1

FROM ONE SOURCE TO MANY SINKS

FROM ONE SOURCE TO MANY SINKS

FROM MANY SOURCES TO ONE SINK

FROM MANY SOURCES TO ONE SINK

FROM MANY SOURCES TO MANY SINKS

^{12/8/2002}

TriState Buffer Concept

Switch model of a multiplexer

TriState Buffer Concept

Switch model of a multiplexer

TRISTATE buffer signal drivers - a DISTRIBUTED MULTIPLEXER

TriState Buffer

SWITCH MODEL

OE	in	out
0	0	Ζ
0	1	Ζ
1	0	0
1	1	1

Z = High Impedance output not connected to input

TriState Buffer

SWITCH MODEL

TriState Buffer

SYMBOLS

SWITCH MODEL

CMOS IMPLEMENTATION

UNIDIRECTIONAL BUS LINE

Propagation from many sources to many sinks

UNIDIRECTIONAL BUS LINE

Propagation from many sources to many sinks

BIDIRECTIONAL BUS LINE

BIDIRECTIONAL BUS LINE

WIRED LOGIC

TRANSISTORS WORK AS INVERTERS

OPEN COLLECTORS NEED PULL_UP RESISTORS

WIRED LOGIC

WIRED LOGIC BUS

MEMORY ELEMENTS

THE BASIC ELEMENT IS A STATIC LATCH THAT HOLDS THE STORED VALUE AS LONG THE POWER IS ON.

MEMORY ELEMENTS

12/8/2002

MEMORY ARRAY

RAM -

Random Access Memory

- Each word in the RAM memory can be read by giving its address and observing the data lines after some time.
- Each word can be re-written by giving its address, presenting the new data and keeping it stable for some time.
- Addressing can be random (there are no requirements for any sequence in addresses) - hence Random Access Memory.
- Storage matrix is usually very large and organized as a square matrix of word cells

What have we learnt?

- TriState buffers allow to connect many signal sources
 - to the same signal line. Wired logic can provide the same functionality although is less popular.
- Flip-flops can be organized in registers, registers in register files.
- RAM Random Access Memory allows to read/write data at a randomly chosen address.