Scheduling and Assignment

- Miodrag Potkonjak

Scheduling

Complexity

Problem Solving Techniques

Directions

Scheduling using Simulated Annealing

Reference:
Devadas, S.; Newton, A.R.
Algorithms for hardware allocation in data path synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, July 1989, Vol.8, (no.7):768-81.

Simulated Annealing

Statistical Mechanics Combinatorial Optimization

State $\{r:\} \quad$ (configuration -- a set of atomic position)
weight $e^{-E(r: r]) / K}{ }_{\mathbf{B}}{ }^{\boldsymbol{T}} \quad-$ Boltzmann distribution
$E(\{r:])$: energy of configuration
K_{B} : Boltzmann constant
T : temperature

Low temperature limit ??

Analogy

Physical System

Optimization Problem
State (configuration)
Energy
Ground State
Rapid Quenching
Careful Annealing
\longrightarrow Solution
\longrightarrow Cost function
\longrightarrow Optimal solution
\longrightarrow Iteration improvement
\longrightarrow Simulated annealing

Generic Simulated Annealing Algorithm

1. Get an initial solution S
2. Get an initial temperature $T>0$
3. While not yet "frozen" do the following:
3.1 For $1 \leq i \leq L$, do the following:
3.1.1 Pick a random neighbor S^{\prime} of S
3.1.2 Let $\Delta=\operatorname{cost}\left(S^{\prime}\right)-\operatorname{cost}(S)$
3.1.3 If $\Delta \leq 0$ (downhill move) set $S=$ S'
3.1.4 If $\Delta>0$ (uphill move)
set $S=S^{\prime}$ with probability $e^{-\Delta T}$
3.2 Set T = rT (reduce temperature)
4. Return S

Basic Ingredients for S.A.

- Solution space
- neighborhood Structure
- Cost function
- Annealing Schedule

Integer Linear Programming

- Given: integer-valued matrix $\mathrm{A}_{\text {mxn }}$,

$$
\text { vectors } B=\left(b_{1}, b_{2}, \ldots, b_{m}\right), C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

- Minimize: $C^{\top} X$

Subject to:

$$
\begin{aligned}
& A X \leq B \\
& X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { is an integer-valued vector }
\end{aligned}
$$

Integer Linear Programming

- Problem: For a set of (dependent) computations $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{n}\right\}$, find the minimum number of units needed to complete the execution by k control steps.
- Integer linear programming:

Let y_{0} be an integer variable.
For each control step $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{k})$:
define variable x_{ij} as
$\mathrm{x}_{\mathrm{ij}}=1$, if computation t_{j} is executed in the ith control step.
$x_{i j}=0$, otherwise.
define variable $y_{i}=x_{i 1}+x_{12}+\ldots+x_{i n}$.

Integer Linear Programming

- Integer linear programming:

For each computation dependency: t_{i} has to be done before t_{j}, introduce a constraint:

$$
\begin{equation*}
k \cdot x_{1 i}+(k-1) \cdot x_{2 i}+\ldots+x_{k i}<k \cdot x_{1 j}+(k-1) \cdot x_{2 j}+\ldots+x_{k j}+1 \tag{*}
\end{equation*}
$$

Minimize: $\quad y_{0}$
Subject to: $\quad x_{1 i}+x_{2 i}+\ldots+x_{k i}=1 \quad$ for all $1 \leq i \leq n$ $y_{j} \leq y_{0} \quad$ for all $1 \leq i \leq k$
all computation dependency of type (*)

An Example

6 computations 3 control steps

An Example

Introduce variables:

- x_{ij} for $1 \leq \mathrm{i} \leq 3,1 \leq \mathrm{j} \leq 6$
$-y_{i}=x_{i 1}+x_{i 2}+x_{i 3}+x_{i 4}+x_{i 5}+x_{i 6}$ for $1 \leq i \leq 3$
- y_{0}
- Dependency constraints: e.g. execute c_{1} before c_{4}

$$
3 x_{11}+2 x_{21}+x_{31}<3 x_{14}+2 x_{24}+x_{34}+1
$$

- Execution constraints:

$$
x_{1 i}+x_{2 i}+x_{3 i}=1 \text { for } 1 \leq i \leq 6
$$

An Example

Minimize:
Subject to:
y_{0}

$$
y_{i} \leq y_{0} \text { for all } 1 \leq i \leq 3
$$

dependency constraints execution constraints
One solution: $\quad y_{0}=2$

$$
\begin{aligned}
& x_{11}=1, x_{12}=1, \\
& x_{23}=1, x_{24}=1, \\
& x_{35}=1, x_{36}=1 . \\
& \text { All other } x_{i j}=0
\end{aligned}
$$

