Scheduling and Assignment

Miodrag Potkonjak

Scheduling

Complexity

Problem Solving Techniques

Directions

Scheduling using Simulated Annealing

Reference:

Devadas, S.; Newton, A.R.

Algorithms for hardware allocation in data path synthesis.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, July 1989, Vol.8, (no.7):768-81.

Simulated Annealing

Statistical Mechanics Combinatorial Optimization

- State {r:} (configuration -- a set of atomic position) weight $e^{-E({r:})/K} B^T$ -- Boltzmann distribution
- E({r:]): energy of configuration
- K_B: Boltzmann constant
- T: temperature
- Low temperature limit ??

Analogy

Physical System

Optimization Problem

State (configuration)

Energy

Ground State

Rapid Quenching

Careful Annealing

- → Solution
 - Cost function
 - Optimal solution
 - Iteration improvement
 - Simulated annealing

Generic Simulated Annealing Algorithm

- 1. Get an initial solution S
- 2. Get an initial temperature T > 0
- 3. While not yet "frozen" do the following:
 - 3.1 For $1 \le i \le L$, do the following:
 - 3.1.1 Pick a random neighbor S' of S
 - 3.1.2 Let $\Delta = cost(S') cost(S)$
 - 3.1.3 If $\Delta \leq$ 0 (downhill move) set S = S'
 - 3.1.4 If Δ >0 (uphill move)
 - set S=S' with probability $e^{-\Delta/T}$
 - 3.2 Set T = rT (reduce temperature)

4. Return S

Basic Ingredients for S.A.

- Solution space
- neighborhood Structure
- Cost function
- Annealing Schedule

Integer Linear Programming

- **Given**: integer-valued matrix A_{mxn} , vectors $B = (b_1, b_2, ..., b_m), C = (c_1, c_2, ..., c_n)$
- Minimize: C^TX
- Subject to:
 AX ≤ B
 X = (x₁, x₂, ..., x_n) is an integer-valued vector

Integer Linear Programming

- Problem: For a set of (dependent) computations {t₁,t₂,...,t_n}, find the minimum number of units needed to complete the execution by k control steps.
- Integer linear programming:
 Let y₀ be an integer variable.

For each control step i ($1 \le i \le k$):

define variable x_{ii} as

 $x_{ij} = 1$, if computation t_j is executed in the ith control step.

 $x_{ij} = 0$, otherwise.

define variable $y_i = x_{i1} + x_{i2} + \ldots + x_{in}$.

Integer Linear Programming

Integer linear programming:

For each computation dependency: t_{i} has to be done before $t_{j^{\prime}}$ introduce a constraint:

k• x_{1i} + (k-1) • x_{2i} + ... + x_{ki} < k• x_{1j} + (k-1) • x_{2j} + ... + x_{kj} + 1 (*)Minimize: y_0 Subject to: x_{1i} + x_{2i} + ... + x_{ki} = 1 for all $1 \le i \le n$ $y_j \le y_0$ for all $1 \le i \le k$ all computation dependency of type (*)

An Example

6 computations3 control steps

An Example

- Introduce variables:
 - $\bullet x_{ij}$ for $1 \le i \le 3, 1 \le j \le 6$

•
$$y_i = x_{i1} + x_{i2} + x_{i3} + x_{i4} + x_{i5} + x_{i6}$$
 for $1 \le i \le 3$

 Dependency constraints: e.g. execute c₁ before c₄ 3x₁₁+2x₂₁+x₃₁ < 3x₁₄+2x₂₄+x₃₄+1
 Execution constraints:

$$x_{1i} + x_{2i} + x_{3i} = 1$$
 for $1 \le i \le 6$

An Example

Subject to:
 One solution:

Minimize:

 y_0 $y_i \le y_0$ for all $1 \le i \le 3$ dependency constraints execution constraints $y_0 = 2$ $X_{11} = 1, X_{12} = 1,$ $X_{23} = 1, X_{24} = 1,$ $x_{35} = 1, x_{36} = 1.$ All other $x_{ii} = 0$