
■ Miodrag Potkonjak

Scheduling

■ Complexity

■ Problem Solving Techniques

■ Directions

Scheduling using Simulated
Annealing

Reference:
Devadas, S.; Newton, A.R.
 Algorithms for hardware allocation in data path

synthesis.
 IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, July 1989,
Vol.8, (no.7):768-81.

Simulated Annealing
Local Search

Solution space

C
os

t f
un

ct
io

n

?

Statistical Mechanics

Combinatorial Optimization

State {r:} (configuration -- a set of atomic position)

weight e-E({r:])/K BT -- Boltzmann distribution

E({r:]): energy of configuration

KB: Boltzmann constant

T: temperature

Low temperature limit ??

Analogy
Physical System

State (configuration)

Energy

Ground State

Rapid Quenching

Careful Annealing

Optimization Problem

Solution

Cost function

Optimal solution

Iteration improvement

Simulated annealing

Generic Simulated Annealing Algorithm
1. Get an initial solution S
2. Get an initial temperature T > 0
3. While not yet “frozen” do the following:
 3.1 For 1≤i ≤ L, do the following:

 3.1.1 Pick a random neighbor S’ of S
 3.1.2 Let ∆=cost(S’) - cost(S)
 3.1.3 If ∆ ≤ 0 (downhill move) set S = S’
 3.1.4 If ∆>0 (uphill move)

set S=S’ with probability e-∆/T

3.2 Set T = rT (reduce temperature)
4. Return S

Basic Ingredients for S.A.

■ Solution space
■ neighborhood Structure
■ Cost function
■ Annealing Schedule

Integer Linear Programming
■ Given: integer-valued matrix Amxn,

 vectors B = (b1, b2, …, bm), C = (c1, c2, …, cn)

■ Minimize: CTX

■ Subject to:
 AX ≤ B
 X = (x1, x2, …, xn) is an integer-valued vector

Integer Linear Programming
■ Problem: For a set of (dependent) computations {t1,t2,…,tn}, find the

minimum number of units needed to complete the execution by k
control steps.

■ Integer linear programming:
Let y0 be an integer variable.

For each control step i (1 ≤ i ≤ k):
 define variable xij as

 xij = 1, if computation tj is executed in the ith control step.
 xij = 0, otherwise.

 define variable yi = xi1 + xI2 + … + xin .

Integer Linear Programming
■ Integer linear programming:

For each computation dependency: ti has to be done before tj,
introduce a constraint:

k•x1i+ (k-1) • x2i+ … + xki < k• x1j+ (k-1) • x2j+ … + xkj+ 1 (*)

Minimize: y0

Subject to: x1i+ x2i+ … + xki = 1 for all 1 ≤ i ≤ n

yj ≤ y0 for all 1 ≤ i ≤ k
all computation dependency of type (*)

An Example

c1 c2 c3

c4

c6

c5

6 computations
3 control steps

An Example
■ Introduce variables:

◆ xij for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6
◆ yi = xi1+xi2+xi3+xi4+xi5+xi6 for 1 ≤ i ≤ 3
◆ y0

■ Dependency constraints: e.g. execute c1 before c4
3x11+2x21+x31 < 3x14 +2x24+x34+1

■ Execution constraints:
 x1i+x2i+x3i = 1 for 1 ≤ i ≤ 6

An Example
■ Minimize: y0

■ Subject to: yi ≤ y0 for all 1 ≤ i ≤ 3
dependency constraints
execution constraints

■ One solution: y0 = 2
x11 = 1, x12 = 1,
x23 = 1, x24 = 1,
x35 = 1, x36 = 1.
All other xij = 0

