
Problem 1. Fast Transforms and
Butterflies.

• (a) Draw a kernel of a Fast Reed-Muller Transform. Explain on which
formula of Boolean Algebra it is based.

• (b) Illustrate transformation of a symbolic 3 variable Karnaugh Map of
Boolean Function to its Positive Polarity Reed-Muller Form using a
butterfly based on the RM Kernel from point (a).

• (c) Repeat point (b) for function: f1 = AB + C. Show logic values in
all nodes of the graph. Next repeat point (b) for function f2 = A’B’C’
⊕ A where symbol A’ means negation of input variable A.

• (d) Draw a purely combinational realization of the Butterfly diagram
from point (b).

• (e) draw a pipelined realization of the circuit from point (d),
explain in your own words how it works, draw for this pipeline a
timing diagram that is typical to illustrate operations of pipelines.

SOLUTION TO FINAL EXAM
PROBLEMS

• (a) Draw a kernel of a Fast Reed-Muller Transform. Explain on which
formula of Boolean Algebra it is based.

⊕⊕⊕⊕

• (b) Illustrate transformation of a symbolic 3 variable Karnaugh Map of
Boolean Function to its Positive Polarity Reed-Muller Form using a
butterfly based on the RM Kernel from point (a). First we draw for two
variables, as in class.

a’
a

a’

1

a’b’
a’b

a b’

a b a b

a

b

1

minterms PPRM
coefficients

Please
verify by
yourself

Minterms of
three-
variable
function

PPRM
coefficients

Now, understanding order of variables we can draw for three variables, if in doubt of
the order of coefficients, we can always verify - the number of possibilities is not that
high so you can find the correct graph quickly.

a’b’c’

a b c

a

b

1
a’b’c

a’b c’

a’b c
a b’c’
a b’c

a b c’

a b c

c

a b
a c

b c

abc’=ab(1⊕ c)=ab ⊕ ac

a’bc’=(1 ⊕ a)b(1⊕ c)=b(1 ⊕
a⊕ c⊕ ac)=b ⊕ ab ⊕ bc ⊕ abc

You can write formula
like this for every
minterm. Think how
this formula relates to
the graph

Every
node
with two
inputs
does
exoring

Minterms of
three-
variable
function

PPRM
coefficients

a’b’c’

a b c

a

b

1
a’b’c

a’b c’

a’b c
a b’c’
a b’c

a b c’

a b c

c

a b
a c

b c

Every
node
with two
inputs
does
exoring

Red dot denotes
value 1

• f1 = AB + C = AB(C+C’)+(A+A’)(B+B’)C=ABC+ABC’+A’BC+AB’C+A’B’C

• Verification from
definition

• f1 = AB + C = AB ⊕
ABC ⊕ C

Minterms of
three-
variable
function

PPRM
coefficients

a’b’c’

a b c

a

b

1
a’b’c

a’b c’

a’b c
a b’c’
a b’c

a b c’

a b c

c

a b
a c

b c

Every
node
with two
inputs
does
exoring

Red dot denotes
value 1

• Verification from
definition

• f2 = A ⊕ A’B’C’ = A ⊕ 1
⊕ A ⊕ B ⊕ C ⊕ AB ⊕ AC
⊕ BC ⊕ ABC

Next repeat point (b) for function f2 = A’B’C’ ⊕ A where symbol A’ means negation of input
variable A.

f2 = A ⊕ A’B’C’ = 1 ⊕ B ⊕ C ⊕
AB ⊕ AC ⊕ BC ⊕ ABC

• (d) Draw a purely combinational realization of the Butterfly diagram
from point (b).

• Replacing symbols od modulo-2 addition with exor gates in graph we
obtain directly the combinational circuit.It can be redrawn to
emphasize that each block corresponding to a kernel is the same
layout.

• (e) draw a pipelined realization of the circuit from point (d),
explain in your own words how it works, draw for this pipeline a
timing diagram that is typical to illustrate operations of pipelines.

• It is sufficient to insert D type flip-flops after every block.

Problem 2. Pipeline design,
retiming and a controller.

• (a) Start from circuit shown here. Design a pipelined circuit
for this graph. Retime if necessary (we started this project in
the class and we spent much time!).

• (b) Design the controller FSM for this pipeline. It should be
optimized and verified.

• (c)Draw small part of the Timing table for your pipeline to
confirm that you understand timing relations in it. Remember
that timing can be changed but the timing relations must be
preserved

Y1=x0+a2x1+b2x2

Current
input

One
delayed
input
(previo
us)

Twice
delayed
input

Solution to Problem 2.
• (a) Start from circuit shown here.

Design a pipelined circuit for this
graph. Retime if necessary.

3D

3D

2D

D

2D

D

We will be retiming by
moving delays through
the circuit

We slow down the
circuit three times by
replacing D by 3D

2D

D

2D

D

2D

D

2D
D D

D

D

DD

2D

3D DD

D
2D

3D

D
D

D

3D

D

D
D

DD

D D

3D

D

DD

DD

D D

3D

D

DD

DD

D-1 D

D D

2D

D

D

D

D-1 D

DD

D

3D

D

D

D

D

D

D

D D

D

3D

D

D

D

D

D

D

D D

We can omit D-1

on input

And finally we have all
logic blocks separated
by delay registers

D D

D

D

D

D

D

D D
D

D

D

Now you can connect the same
clock to all registers D and you do
not need to design any additional
Controller! The whole trick was
just smart retiming!!!!

0 1 2 3 4 5 6 7 8 9

A

B C
D

E
F

G
H
I

K

L

M

You do not have to draw the entire pipeline timing diagram, just show that you
understand the principles.

A
B
C
D
E
F
G
H
I
J
K
L
M
y

time

registers
A1=X0+F0 A2=X1+F1 A3=X2+F2 A4=X3+F3 A5=X4+F4 A6=X5+F5

B2=A1 B3=A2 B4=A3 B5=A4 B6=A5

C3=a2*B2

D4=C3+M3

y5=D4+A1

Three delays,
OK since we
multiplied D
by 3

Problem 3. Design of
parallel controllers.

• (a) Draw an arbitrary parallel flowchart that
has some realistic (not necessarily practical)
meaning, using parallel FORK and JOIN nodes.
You can use other parallel nodes if you wish.

• (b)Illustrate realization of control using
arbitrary method shown in the class.

• (c) Draw schematically a complete system of
control unit and data path and analyze its
behavior graphically (a timing diagram for
data and most important controls) for one set
of input data.

Solution to Problem 3start

t:=0,s:=0

fork

s:= s+2 t := t-1

join

stop

A=1

t:=t+1

t=0 no

yes

yes

no

A=0 yes

no

C1

C2

C3C4

Data Path

Control Unit

C1
C2

C3 C4

Binary
signal A (t=0)

start stop

s
t

A

0

0

1 1 1 1 1

1 2 3 4

0

0 00 0 2

3

0

2

4

1

6

0

8 10

0

0 0 0

12

0

1

C1 C2 C2 C2 C2 C3,C4 C3,C4 C3,C4 C4 C4

Standard
synchronization
circuits not
shown

stop

12

0

1

start

t:=0,s:=0

fork

s:= s+2 t := t-1

join

stop

A=1

t:=t+1

t=0 no

yes

yes

no

A=0 yes

no

C1

C2

C3C4

C1

C2

A

C4

A

C3
(t=0)

start

Q Q
JJ K K

D

D
D

stop

Fork realized
with wire, Join
with JK FF

Problem 4. Reachability analysis.
• (a) Convert a non-deterministic FSM from Figure to an equivalent

deterministic FSM using reachability analysis.Each state has its
specific output with the same name, for instance being in state X is
signalized by output X =1. Y is the accepting state.

• (b) Draw the schematics of the non-deterministic machine using D flip-
flops

• (c) Draw the schematics of the deterministic machine using D flip-
flops. Do not try to minimize the number of flip-flops

• (d) Can it be the same schematics? Can you explain why “yes” or why
“not”?

a

a
a’b

X

Y Z

a’b’
T

a⊕ b’

a⊕ b’
a⊕ b

1 1

Solution to Problem 4.(a)

{X}

{T} {Y} {X,Z}

{T,Y} {Y,Z} {X,Y.Z}

{T,Z}

{T,Y,Z}

{X,Z,T}

{T,X,Y,Z}

a’b’
a’b a

1

1
a’b’ a’b ab

a’b’

ab

ab’a’b

a’b ab ab’

a

ab’

a⊕ ba⊕ b
a’b’

1
a⊕ b

a⊕ b
a’b

a’b’

a⊕ b

Accepting
states are
read a⊕ b

• (b) Draw the schematics of the non-deterministic machine using D flip-
flops

• (c) Draw the schematics of the deterministic machine using D flip-
flops. Do not try to minimize the number of flip-flops

• (d) Can it be the same schematics? Can you explain why “yes” or why
“not”?

As an answer to points (b), (c), and (d) let us observe that if one uses
one-hot coding of non-deterministic machine then the schematic realizes
both the non-deterministic machine and equivalent deterministic machine
since the conversion is done automatically by this synthesis method. It
results directly from the operation of gates and the reachability analysis.

a

aa’b
X

Y Z

a’b’
T

a⊕ b’
a⊕ b’

a⊕ b

1
1

X
T

Y

a
b

Z

start

a⊕ b

Problem 5. Regular
expressions.

• (a) Write a regular expressions of language L for the
following event: An even number of symbols c following
symbol b or a divisible by three number of symbols c
followed by an odd number of symbols b.

• (b) Draw a graph of this regular expression

• (c)Convert the graph to a non-deterministic machine

• (d) Convert the non-deterministic machine to an
equivalent deterministic machine.

• (e) Verification: For every possible sequence of letters
b and c of length not larger than 3 analyze if it
belongs to language L:

– in the regular expression,

– in the non-deterministic machine,

– and in the deterministic machine.

• If it does not, what does it mean?

Solution to Problem 5.
• (a) Write a regular expressions of language L for the

following event: An even number of symbols c following
symbol b or a divisible by three number of symbols c
followed by an odd number of symbols b.

b(cc)* Regular expression for “even number of symbols c following
symbol b.” We assume zero to be an even number.

Regular expression for “divisible by three number of
symbols c followed by an odd number of symbols b. We
assume zero to be a number divisible by 3.

(ccc)*b
(bb)*

b(cc)* ∪ (ccc)*b(bb)*

Union of these two regular expressions realizes language L

• (b) Draw a graph of this regular expression

Solution to Problem 5.

A B C J

D

E H

IF

G

b

b b

b

c c

e e e denotes an
empty symbol

e

cc

c

e

I used a “safe”
method from the
class here. The first
e on top left could
be avoided.

• (c)Convert the graph to a non-deterministic machine

Solution to Problem 5.

A C J

D

E H

IF

G

b

b b

b

c c

All symbols e
are removed
and paths are
adjusted to
represent the
same language

b

cc

c

c

b

c

b

b

• (d) Convert the non-deterministic machine to an
equivalent deterministic machine.

Solution to Problem 5.

{A}

{C,H,J}
b

b

c

 {F}

 {D}
 {I}

c

 {H,J}

 error

 {C,J}

 {G}

 {E}

b
b

b

c

c cb b

c

c

b c c

b
All accepting
states
include JThe table from next page verifies

all stages. OK. If the columns were
different there would be in error in
calculations

Empty

b

c

bb

bc

cb

cc

ccc

ccb

cbc

cbb

bcc

bcb

bbc

bbb

Expression Non-deterministic Deterministic
no
yes
no
no
no

no
no
no
no
no

no
yes
no
no
yes

no
yes
no
no
no

no
yes
no
no
no

no
yes
no
no
yes

no
yes
no
no
yes

no
no
no
no
no

no
no
no
no
no

Problem 6. Iterative circuits.

• (a) Define what is an iterative circuit.

• (b) Write what is a relation between one-directional, one-
dimensional iterative circuit and a Finite State Machine.
Explain the Trade-off between speed and area in digital
design and illustrate them on two versions of a circuit for
comparison of two numbers - one iterative combinational and
one a finite state machine.

• (c) Design an iterative combinational circuit with three
outputs: p= (A>B), r=(A=B), s=(A<B). Assume delay t1 for
every logic gate with 2 inputs. Compare starting from the
least significant bit. Draw the transition graph (state
machine) for the single combinational block. Calculate the
total delay of the circuit. Draw the schematics. Explain
your design stages.

• (d) Use the transition graph from point (c) above to draw
the sequential FSM realizing serial comparison for the same
task.

Solution to Problem 6.

• (a) Define what is an iterative circuit.

– Iterative circuit is a combinational circuit with a sequence of
blocks. Each block has iterative (carry) inputs and iterative
outputs. It has also direct inputs and may have direct outputs.
All blocks (except of possibly the first and the last) as the
same.

m>0

k k

n≥0

C0

i1 i2 i3 i4

y1 y2 y3 y4

C1 C2 C3 C4

Purely
combinational
logic

logic block of
an iterative
circuit for word
of length 4

Problem 6. Iterative circuits.
• (b) Write what is a relation between one-directional, one-dimensional

iterative circuit and a Finite State Machine. Explain the Trade-off
between speed and area in digital design and illustrate them on two
versions of a circuit for comparison of two numbers - one iterative
combinational and one a finite state machine.

m>0

k k

n≥0
As shown in previous slide, in iterative circuit
you iterate this combinational block in space, in
one dimension.

In FSM the iteration is done in time, by
storing intermediate signals in a register.

m>0

k k

n≥0

re
gi

st
er

For the word of length M, the delay is M*DB
where DB is the delay of the block. The cost is
M*DB

For the word of length M, the delay is M*(DB +
reg-delay) where reg-delay is a total delay
related to setting and reading the register. The
cost is M + register-Cost. Thus FSM for the
same task is cheaper but slower.

Problem 6. Iterative circuits.
• (c) Design an iterative combinational circuit with three outputs: p=

(A>B), r=(A=B), s=(A<B). Assume delay t1 for every logic gate with 2
inputs. Compare starting from the least significant bit. Draw the
transition graph (state machine) for the single combinational block.
Calculate the total delay of the circuit. Draw the schematics. Explain
your design stages.

• (d) Use the transition graph from point (c) above to draw the
sequential FSM realizing serial comparison for the same task.

A=B

A<BA>B

00,11= aibi

01= aibi10= aibi

00,11,01= aibi

00,11,10= aibi

01

10

PS aibi
00 01 11 10

S1=00

S3=01

 -- =11

S2=10

S1

S2

S3

00 01 00 10

-- -- -- --

10 01 10 10

01 01 01 10

Problem 6. Iterative circuits.
PS aibi

00 01 11 10

S1=00

S3=01

 -- =11

S2=10

00 01 00 10

-- -- -- --

10 01 10 10

01 01 01 10

PS aibi
00 01 11 10

S1=00

S3=01

 -- =11

S2=10

0 0 0 1

- - - -

1 0 1 1

0 0 0 1

PS aibi
00 01 11 10

S1=00

S3=01

 -- =11

S2=10

 0 1 0 0

 - - - -

 0 1 0 0

 1 1 1 0

Q1 Q2Q1 Q2

Q1+ Q2+

Q1+ = Q1 (a’b)’ + (ab’)

Q2+ = Q2 (ab’)’ + (a’b)

Observe smart design
based on reuse of groups
and inhibition

Group ab’
used for
inhibition

Problem 6. Iterative circuits.
Q1+ = Q1 (a’b)’ + (ab’)
Q2+ = Q2 (ab’)’ + (a’b) a b

Q1

Q2

Q1+

Q2+

Problem 6. Iterative circuits.

a4 b4

0

0

b1a1 a2 b2 b3a3

p=(A>B)

S=(A<B)

r=(A=B)Initial carry
set to zeros

Final
encoding of
decision
signals

Problem 6. Iterative circuits.

a b

Q1

Q2

Q1+

Q2+

D

c

Q

D

c

Q

clock

reset

Realization of the Finite State Machine for the comparator

The output decoder with outputs p, r and s as in previous
slide can be also added at the output of flip-flops.

Problem 7. Turing Machine.
• Design of a Turing machine to calculate number
2n given number n on a tape. Both numbers are
represented by subsequent ones.

• Example for n=3:

• 011100 --> 0111011111100

Initial head position Final head position

(a) draw the data path from functional blocks

(b) draw the control unit and how the data path and the control unit are connected.

(c) realize the control unit as any machine of your choice - Mealy, Moore, netlist of
flip-flops, OR and branching gates, or a microprogrammed unit.

(d) verify using your schematics and the example above (n --> 2n) that your machine
works correctly.

Perform the following:

Solution to Problem 7.
• Design of a Turing machine to calculate number 2n given number

n on a tape. Both numbers are represented by subsequent ones.

• Example for n=3:

• 011100 --> 0111011111100

S=stop

R=move head right

L=move head left

J(0)=Jump if zero to
instruction shown by
an arrow

J(1)=Jump if one to
instruction shown by
an arrow

(1) = write 1 to the
tape

(0) = write 0 to the
tape

Instructions for Post Machine Turing Machine and Post Machine
are equivalent. Turing Machine has
Finite State Machine Control and
Post has a program with
instructions and jumps. So it is
easier to design Post Machine and
next convert it to equivalent Turing
Machine. Or we can design a
microcontroller.

(a) draw the data path from functional blocks

(b) draw the control unit and how the data path and the control unit are connected.

(c) realize the control unit as any machine of your choice - Mealy, Moore, netlist of flip-flops, OR and branching gates, or a
microprogrammed unit.

Address of the
cell on tape

Reversible position counter for
the head

R:=R+1

R:=R-1

Instruction R

Instruction L

Enable
signals local
to each FF

Instruction (1)

Instruction (0)

read

Data Path of Turing MachineData Path of Turing Machine

Clock is not
shown

write

Solution to Problem 7.
• Design of a Turing machine to calculate number 2n given number

n on a tape. Both numbers are represented by subsequent ones.

• Example for n=3:

• 011100 --> 0111011111100 R
(0)

R
J(1)
R
J(1)
(1)
R

(1)
L
J(1)
L
J(0)
L

J(1)
(1)

J

(1)

R

R
J(1)

S

S=stop

R=move head right

L=move head left

J(0)=Jump if zero to
instruction shown by
an arrow

J(1)=Jump if one to
instruction shown by
an arrow

(1) = write 1 to the
tape

(0) = write 0 to the
tape

Going
right
through
results

Going right through data

Going right through results

Going left through data

Going left through results

Start by moving to the right and marking the
1 that is being copied by 0

For one 1 erased in data write two 1’s in results

Last 1 was
copied

Not last 1 was
copied

Stop with head to the right
from the results

Instructions for Post Machine

Program for Post Machine

R
(0)

R
J(1)
R
J(1)
(1)
R

(1)
L
J(1)
L
J(0)
L

J(1)
(1)

J

(1)

R

R
J(1)

S

Going
right
through
results

Going right through data

Going right through results

Going left through data

Going left through results

Start by moving to the right and marking the
1 that is being copied by 0

For one 1 erased in data write two 1’s in results

Stop with head to the right
from the results

Enumeration for instructions is shown

0
1

2
3
4
5
6
7

8
9
10
11

12
13
14
15
16

17
18
19
20
21

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Present
state

Instruction

R
0
R
J
R
J
1
R
1
L
J
L
J
L
J
1
J
1
R
R
J
S

Jump address

-
-
-
2
-
4
-
-
-
-
9
-
17
-

Condition to
check

0
0
0
t1
0
t1
0
0
0
0
t1
0
t0
0
t1
0
1
0
0
0
t1
0

13
-
0
-
-
-
19
-

t0=tape 0, t1 = tape 1,0=constant 0=counter
increase, 1 = constant 1 = unconditional jump

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Present
state

Instruction

R
0
R
J
R
J
1
R
1
L
J
L
J
L
J
1
J
1
R
R
J
S

Jump address

-
-
-
2
-
4
-
-
-
-
9
-
17
-

Condition to
check

0
0
0
t1
0
t1
0
0
0
0
t1
0
t0
0
t1
0
1
0
0
0
t1
1

13
-
0
-
-
-
19
21

encoding

00000

binary
encoding

…..

.

..

10101

Present
state

Instruction Jump addressCondition to
check

1=000
0=010
L=100
R=110
S=001
J= --1

t1 = read = 00 address for mux

t0 = NOT(read)=01address for mux

0 = constant one = 10 address for
mux

1= constant one selected=11 address
for mux

Encoding
of
instruction
field

To complete the table just
replace symbols with their
binary codes

Encoding of condition to check in
mux

Instruction R

Instruction L

Instruction (1) Instruction (0)read

MicroprogrammedMicroprogrammed
Control Unit of TuringControl Unit of Turing
MachineMachine

Control unit
clock

ROM

Control register
Next/jump

Jump address (5 bits)

Instruction (1) Instruction (0) Instruction L Instruction R

2-bit
condition
selection
bits

3-bit
instruction
field

read

Jumps when
read=1,otherwise
increases the
counter by one

S

Constant 0

Constant 1

0 1 2 3
Blinks with
every jump

Problem 8. Machines with stack.

• (a)Design a machine with a control
unit, an input shift register and a
stack that accepts language ∪ AnBn =
AB ∪ AABB ∪ AAABBB …

• (b) Show details of data path
design.

• (c)Discuss the role of all signals.

• (d) Design a microprogrammed
control unit for the stack and
input register control.

Solution to Problem 8.First stage:draw
diagram of controller

S1: Check first
symbol A from
input tape

A

S3: Read
symbols B from
input tape and
pop A from stack

B
Stack not
empty & B

B or #
S4: Trap state

A

S5: Accept
state

Stack empty &
symbol # on tape

Stack empty & B on
tape

Stack empty & # on
tape

Input alphabet={A,B}

End of input tape marked by #.

Stack item is only A.

You can verify this diagram on input sequences: #,
B#,AB#, AAB#, A#, AABB# and ABB#.

Not
accepted

S2: Read symbols A push A, MI

push A, MI

accepted

A

#

Control Unit

B B B A

MI=Move input
tape right

A
APush A

Pop

E=Stack
empty

2 bits,
i1,i2

D D D D

A encoded as 10, B as 01, # as 00

Input
tape

Stack

D D D D

One way to realize input
tape. MI works as
enable. Stack can be
build similarly. But shift
left and right should be
implemented. Stack can
be also realized with a
memory and reversible
counter.

Encoded
symbols A,
B and #

Q

Q

Clock signals connected to all FFs not shown for
simplification

0
1

MI

clock

i1,i2

Second stage:Encode symbols and draw
diagram of data path and blocks

Stage 3:Create the table to program the ROM. It includes first only
symbols and next they are encoded.Binary (encoded) data are used to
program the ROM.

Present
state

Encoded Present
state

Condition
Checked

Encoded
Condition
Checked

MI push pop accept
Not
accept

Jump
state

Encoded
jump state

000
001
010
011
100
101
110

S1
S2A
S2B
S3A
S3B
S4
S5

A’
A
#
B * E’
E * #
1
1

0=000
1=001
2=010
3=011
4=100
5=101
5=101

0
1
0
1
0
0
0

0
1
0
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
0
0
1

0
0
0
0
0
1
0

S4
S2A
S4
S3A
S5
S4
S5

101
001
101
011
110
101
110

S1: Check first
symbol A from
input tape

A

S3: Read
symbols B
from input
tape and pop
A from stack

BStack
not
empty &
B

B or #

S4: Trap
state

A

S5:
Accept
stateStack empty &

symbol # on
tape

Stack empty &
B on tape Stack empty &

on tape

Not accepted

S2: Read
symbols A

push A, MI

push A,
MI

accepted

A

register

push
pop

ROM

MI

L=Load/add

3
i1
i2

#
A encoded as i1 i2=10, B as
01, # as 00

This is not an
optimized circuit

#

B

A

E
L=1 for load new address,
L=0 for adding 1 to register

1

0 1 2 3 4 5

Stage 4:Draw diagram of the
microprogrammed controller

Problem 9. Controller Design.
• (a) Design a sequential circuit with arbitrary
blocks that executes operations of addition,
multiplication, division and subtraction on
complex numbers.

• (b) Assume that you have available blocks that
realize combinationally operations of addition,
subtraction, multiplication and division of 8-
bit registers.

• (c) Realize and draw the state graph of the
controlling state machine and realize it using
arbitrary method.

• (d) Draw the data path circuit. Show details of
controlling registers. If necessary, optimize
the controlling signals.

• (e) Verify your solution.

(a+jb) +/- (c+jd) = (a +/- c) +
j(b +/- d)

Realization of addition/subtraction

Realization of multiplication

(a+jb) * (c+jd) = ac+ajd + jbc+
j2 bd = (ac-bd)+j(ad+bc)

a b c d

-

re im

+

* * * *

a b c d

+/-

re im

+/-
+ for addition ,
- for
subtraction

Realization of division (a+jb) / (c+jd) = (a+jb)(c-jd)/(c+jd)(c-jd) =
(ac+bd)+j(ad+bc)/(c2+d2)

a b c d

+

re im

+

* * * *

+

* *

Now we have to combine these
three data path to a single data
path, adding multiplexers and
control.

+/-

re im

+/- +

a b c d

* * * * * *

Now we have combined these three
data path to a single data path, adding
multiplexers.

+ for division , - for
multiplication,+ for
addition, - for
subtraction

1 for division,- 0 for
multiplication

0 1 0 1

+ for division
,multiplication,
addition, - for
subtraction

0 1 0 1

The next design stage is to write tables of signals that
control multiplexers. You do not need controlling
state machine. Observe that the controller reduces to
simple logic that controls muxes.

A
B C D

E

F

operation controls

Addition

subtraction

multiplication

division

0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 1 1 1 1 0 0
0 0 0 0 1 1 1

A B C D E F G

G

