Problem 10.
 Minimization of Incompletely Specified Finite State Machines.

	d/- $\mathrm{f} /$	
		h/0
	d/0 h	h/0
		a/0
	-/-f/	f/0
	e/0 ${ }^{\text {a }}$	a/0
	c/1-1	-/-
	b/1	$\mathrm{a} / 1$

Machine M

- Given is Machine M
- (a) Find the minimal machine (in the number of states) that is equivalent to machine M
- (b) Draw the triangular table of machine M
- (c) Solve the triangular table
- (d) Find the maximal compatible groups of states
- (e) Solve graphically the covering/closure problem.
- (f) Formulate algebraically the binate covering problem.
- (g) Realize the machine using JK flipflops and combinational gates.

Solution to Problem 10.

	$\mathrm{d} /-\mathrm{f} / 0$	
b	$\mathrm{c} / 1$	$\mathrm{~h} / 0$
c	$\mathrm{d} / 0$	$\mathrm{~h} / 0$
d	$\mathrm{c} / 0$	$\mathrm{a} / 0$
e	$-/-\mathrm{f} / 0$	
f	$\mathrm{e} / 0$	$\mathrm{a} / 0$
g	$\mathrm{c} / 1$	$-/-$
h	$\mathrm{b} / 1$	$\mathrm{a} / 1$

Compatibles $=\{\mathrm{ae}, \mathrm{af}, \mathrm{bg}, \mathrm{de}, \mathrm{ef}, \mathrm{eg}\}$
af compatible under de, de compatible under af, ef compatible under af

Solution to Problem 10.
Compatibles $=\{a \mathrm{a}, \mathrm{af}, \mathrm{bg}, \mathrm{de}, \mathrm{ef}, \mathrm{eg}\}$

Max compatible afe

Solution to Problem 10.

Compatibles $=\{a \mathrm{a}, \mathrm{af}, \mathrm{bg}, \mathrm{de}, \mathrm{ef}, \mathrm{eg}\}$
af compatible under de, de compatible under af, ef compatible under af

Solving graphically the covering/closure problem

a	$\mathrm{d} /-\mathrm{f} / 0$
b	$\mathrm{c} / 1 \mathrm{~h} / 0$
c	$\mathrm{d} / 0 \mathrm{~h} / 0$
d	$\mathrm{c} / 0$
$\mathrm{e} / 0$	
e	$-/-\mathrm{f} / 0$
f	$\mathrm{e} / 0$
y	$\mathrm{a} / 0$
g	c / l
	$-/-$
h	$\mathrm{b} / 1$
l	$\mathrm{a} / 1$

Solution to Problem 10.

It can be observed that the machine is realized in the next problem since this is the same machine. So, you minimize the machine and next encode it and realize with JK ffs. This is a smarter approach that realizing the non-minimized machine which would lead to too big problem.

The binate covering Problem.
Given is a set of symbols S. Given is a set of groups G such that (for each group $\left.g_{j} \in G\right)\left[g_{j} \subseteq S\right]$

Select set G1 \subseteq G such that:

1) $\cup g_{j} \in G 1=S$
2) $\left[\left(g_{j} \in G 1\right)\right.$ and $\left.\operatorname{IMPLY}\left(g_{j}, g_{r}\right)\right]==>g_{r} \in G 1$

Problem 11. Realization of Synchronous Finite State Machines.

	f/	f/0
	c/1	$\mathrm{h} / 0$
	d/0	h/0
	c/0	a/0
	-1-	f/0
	e/0	a/0
	c/1	--
	/1	a/1

- (a) Given is machine from the left. Realize this machine using D flip-flops and the excitation and output functions that would depend on the minimum total number of variables.
- (b) If you cannot minimize all these functions, try to minimize at least some and prove that you minimize them by some systematic method.
- You do not have to prove that your solution is optimum but you must proceed rationally using the methods shown in class.
- While solving this problem think about all FSM optimizing methods discussed in our class.
- (c)Using the final schematics demonstrate that you indeed minimized the number of arguments of some functions. Write specifically which ones. Prove with your comments that you understand the principles of state assignment and not only the procedure.

Solution to Problem 11.

	$\mathrm{d} /-\mathrm{f} / 0$	
n	$\mathrm{d} / 1$	$\mathrm{~h} / 0$
y	$\mathrm{c} / 0$	$\mathrm{~d} / 0$
$\mathrm{~h} / 0$		
d	$\mathrm{c} / 0$	$\mathrm{a} / 0$
e	$-/-$	$\mathrm{f} / 0$
	$\mathrm{e} / 0$	$\mathrm{a} / 0$
g	$\mathrm{c} / 1$	$-/-$
h	$\mathrm{b} / 1$	$\mathrm{a} / 1$

\{afe, bg, de \} are groups of compatible states from the minimization of states. Encode $\mathrm{A}=\mathrm{afe}, \mathrm{B}=\mathrm{bg}$, $\mathrm{C}=\mathrm{de}, \mathrm{D}=\mathrm{c}, \mathrm{E}=\mathrm{h}$ leads to the table below:

$\mathrm{P} 0(0)=(\mathrm{BE}, \mathrm{ACD})$ $\mathrm{P} 0(1)=(\mathrm{E}, \mathrm{ABCD})$				
A	$\mathrm{C} / 0$	$\mathrm{~A} / 0$		
B	$\mathrm{D} / 1$	$\mathrm{E} / 0$		
C	$\mathrm{D} / 0$	$\mathrm{~A} / 0$		
D	$\mathrm{C} / 0$	$\mathrm{E} / 0$		$\mathrm{Pc}(0)=\mathrm{BCD}$ $\mathrm{Pc}(1)=\mathrm{AE}$

Thus 1--> (BCD, AE) and this partition should be taken to simplify excitation function. The respective ff will depend only on input signals.
$\mathrm{P}(0)=(\mathrm{AD}, \mathrm{BC}, \mathrm{E}), \mathrm{P}(1)=(\mathrm{ACE}, \mathrm{BD})$
$\mathrm{P}(0)$ generates $(\mathrm{AD}, \mathrm{BCE}),(\mathrm{ADE}, \mathrm{BC})$ and $(\mathrm{E}, \mathrm{ABCD})$ which was already found. Assume (ACE, BD). Calculate product:
$(\mathrm{BCD}, \mathrm{AE}) *(\mathrm{ACE}, \mathrm{BD})=(\mathrm{C}, \mathrm{BD}, \mathrm{AE})$ thus B and D should be separated and states A and E should be separated. This can be done by $\mathrm{P} 0(0)$ or (AD, BCE)

Solution to Problem 11.

Solution to Problems 11 and 10.

 Realization with JK FFs.| Q1 $\mathbf{Q 2}^{\text {Q }}$ 3 ${ }^{\text {a }}$ | 0 | |
| :---: | :---: | :---: |
| $\mathrm{A}=000$ | 110,0 | 000,0 |
| 001 | - | - |
| 011 | - | - |
| $\mathrm{E}=010$ | 111,1 | 000,1 |
| $\mathrm{C}=110$ | 101,0 | 000,0 |
| $\mathrm{B}=111$ | 101,1 | 010,0 |
| $\mathrm{D}=101$ | 110,0 | 010,0 |
| 100 | - | - |
| $\begin{aligned} & \mathrm{X}^{+} \mathrm{Y}+\mathrm{Z}^{+}= \\ & \mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3 \end{aligned}$ | | |
| | | |

Output z

> Using standard methods for JK FFs we get:
> J1 = a'
> K1 = a
> $\mathrm{J} 2=\mathrm{a}^{\prime}$
> $\mathrm{K} 2=\mathrm{Q} 1 \mathrm{a}^{\prime}+\mathrm{a} \mathrm{Q}^{\prime}$
> $\mathrm{J} 3=\mathrm{Q}^{\prime} \mathrm{a}^{\prime}$
> $\mathrm{K} 3=\mathrm{a}+\mathrm{Q}^{\prime}=\left(\mathrm{Q}^{\prime} \mathrm{a}^{\prime}\right)^{\prime}$

Problem 12. State Assignment of Synchronous Finite State Machines.

Transition table

00		01	11	10
A	01	11	11	11
B	01	01	1-	01
B	01	11	-1	01
C	01	--	-1	11

ab

Output table

Given is machine M2 described with the following transition and output tables

Solution to Problem 12.

Partitions from Transition Table

Solution to Problem 12.

$\mathrm{T} 1=\{\mathrm{AB}, \mathrm{CD}\}$	selectec
$\mathrm{T} 2=\{\mathrm{AD}, \mathrm{BC}\}$	

$$
\mathrm{ab}
$$

$0 \quad 1$		00	01	11	10
$\mathrm{T} 1=\{\mathrm{AB}, \mathrm{CD}\}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	A	A	B	C
$\mathrm{T} 2=\{\mathrm{AD}, \mathrm{BC}\}$		B	A	C	C
1				C	C
1	C	B	C	C	B
	D	A	-	B	B
Thus encoding is:					
$A=00, B=01, C=11, D=10$	a b				

ab

	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
A	01	11	11	11
B	01	01	1-	01
C	01	11	-1	01
D	01	--	-1	11

This encoding leads to maps at right:

The groups responsible for SOP
minimization are shown

Sol
In red
Ql+ = Q1'ab'+Q2ab+ Q1a'b

repeated
In green
$\mathrm{z} 1=\mathrm{ab}+$
$(a+b)$ 2 $^{\prime}+$ Q1b

In black
$\mathrm{z} 2=1$

Q1 Q2 ${ }^{\mathrm{ab}}$

z1 z2
ab

ab

Solution to ab

transitions

Next states

	00	01	11	10
A	01	11	11	11
B	01	01	1-	01
C	01	11	-1	0
D	01	--	-1	11

Assume that transitions are twice more important we get:

Total graph

Solution to 12 .rule-based

 We get this face of a hypercube

B occurs most often
so is encoded by 00

00

Which leads to encoding $\mathrm{A}=01, \mathrm{~B}=00, \mathrm{C}=10, \mathrm{D}=11$

This is the same set of partitions as before, so the result is very similar in terms of realization cost.

ab

	00	01	11	10
A	01	11	11	11
B	01	01	1-	01
C	01	11	-1	01
D	01	--	-1	11

This leads again to solutions \{T1,T2\} and $\{\mathrm{T} 1, \mathrm{~T} 3\}$

00 01 11 10 A A B				
A	A	A	B	C
B	B	A	C	C
C	B	C	C	B
D	A	-	B	B

	$\begin{array}{lllll}00 & 01 & 11 & 10\end{array}$			
A	01	11	11	11
B	01	01	1-	01
C	01	11	-1	01
D	01	--	-1	11

Solution to Problem 12.

Problem 13. Scheduling and Register Allocation.

(a) How many registers to store the six variables

Life time analysis of variables

How many registers to store the six variables
(ul to u6)?
Inputs: v1, v2, v3, v4
Outputs: $\mathbf{u 5}, \mathbf{u} 6$

$$
\begin{aligned}
& \text { op1: u1 }<-\mathrm{v} 1+\mathrm{v} 2 \\
& \text { op2: } \mathbf{~} 2<-\mathrm{v} 3-\mathrm{v} 2 \\
& \text { op3: } \mathbf{u}<-\mathrm{v} 3+\mathrm{v} 4 \\
& \text { op4: } \mathbf{u} 4<-\mathrm{u} 1-\mathrm{u} 2 \\
& \text { op5: u5 }<-\mathrm{u} 2+\mathrm{u} 3 \\
& \text { op6: } \mathbf{u} 6<-\mathrm{u} 4-\mathrm{u}
\end{aligned}
$$

ALAP needs three clock cycles

3 registers, 1 adder, 1 subtractor.

One more solution: 3 cycles, 3 registers, 2 adders, 1 subtractor.

This solution is not better. From now on, several variants of solving this problem are possible and I just show one of them.

The schematics from left can be realized in memories, register files or registers. Mux M3 and Demux D2 can be simplified by reducing control variables to one each.

Problem 14

Schedule and allocate resources for each operation, minimizing area and latency as much as possible.

- (a) Find the solution with the smallest area
- (b) Find the solution with the smallest latency.
- In points (a) and (b) you are not required to give an optimal solution, since that may prove to be more difficult than can be done in a reasonable amount of time.
- But you have to demonstrate that your reasoning is correct, you understand the problem and know at least some scheduling and allocation methods.

Solution to Problem 14

Unit	Size	Function
Multiplier	8	$*$
ALU	4	$>,+,-$
Comparator	2	$>$
Adder	2	+
Subtractor	2	-

We will need muxes for scheduling. See next slide.

In this figure the latency is 5 (the shortest possible - ASAP), but the cost is
3multipliers*8+2adders*2+1co mparator* $2+1$ subtractor*2
$=24+4+2+2=32$

So our trade-off is to find not slower

Maximum
dependency shown in red limits the latency to 5 .

10 cycles.

filled

Cannot be pushed up

Cannot be pushed up

This is a good solution. But no proof if minimal. Using this method you can find near minimum solution quickly.
,$+>$ and - allocated to ALU.Cost $12+2=14$.
7 cycles.

Problem 15.

From Verilog to sequential logic circuit

```
module DIFFEQ (x, y, u, dx, a, clock, start);
```

```
input [7:0] a, dx;
```

inout [7:0] $\mathrm{x}, \mathrm{y}, \mathrm{u}$;
input clock, start;
reg [7:0] xl, ul, yl;
always
begin
wait (start);
while ($\mathbf{x}<\mathbf{a}$)
begin

$$
\begin{aligned}
& \mathbf{x l}=\mathbf{x}+\mathbf{d x} ; \\
& \mathbf{u l}=\mathbf{u}-(\mathbf{3} * \mathbf{x} * \mathbf{u} * \mathbf{d x})-(3 * \mathbf{y} * \mathrm{dx}) \\
& \mathbf{y l}=\mathbf{y}+(\mathbf{u} * \mathbf{d x}) \\
& @(\text { posedge clock }) \\
& \mathbf{x}=\mathbf{x l} ; \mathbf{u}=\mathbf{u l} ; \mathbf{y}=\mathbf{y l} ;
\end{aligned}
$$

end
endmodule
(a) Design the complete Data Path and Controller for this example. Any method from the class is applicable for any part of the complete design procedure.
(b) Explain your selections of methods and design decisions.
(c)Verify your solution.
module DIFFEQ (x, y, u , dx, a, clock, start);

Circuit optimized for speed. Some standard transformations of data path used. I selected this method to avoid time-consuming design of a control unit. Standard register with enable is used.
x, u and y are the same io signals as on top

