
Problem 10. Minimization of
Incompletely Specified Finite State

Machines.

• Given is Machine M

• (a) Find the minimal machine (in the
number of states) that is equivalent to
machine M

• (b) Draw the triangular table of machine
M

• (c) Solve the triangular table

• (d) Find the maximal compatible groups
of states

• (e) Solve graphically the
covering/closure problem.

• (f) Formulate algebraically the binate
covering problem.

• (g) Realize the machine using JK flip-
flops and combinational gates.

a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1

Machine M



Solution to Problem 10. a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1

a b c d e f g

b

c

d

e

f

g
h bc

af

v

af

cede

v

v

fh

cd

cd, fh

fh

cd, af ah
fh

de, ah

Compatibles = {ae, af, bg, de, ef, eg}

af compatible under  de, de compatible under af, ef compatible under af



Solution to Problem 10. a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1

Compatibles = {ae, af, bg, de, ef, eg}

a
b

c

d
ef

g

h

Max compatible afe

Max compatible bg

Max compatible de

Max
compatible
ge



Solution to Problem 10. a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1

Compatibles = {ae, af, bg, de, ef, eg}
af compatible under  de, de compatible under af, ef
compatible under af

af de

ef

bg h

ae
eg

Complete and
closed graph.

This graph has groups
{aef, de, bg}.

Solving graphically the
covering/closure problem



Solution to Problem 10.
It can be observed that the machine is realized in the next problem since
this is the same machine. So, you minimize the machine and next encode
it and realize with JK ffs. This is a smarter approach that realizing the
non-minimized machine which would lead to too big problem.

The binate covering Problem.

Given is a set of symbols S. Given is a set of groups G such
that (for each group gj ∈  G) [ gj ⊆  S]

Select set G1  ⊆  G such that:

1) ∪  gj ∈  G1 = S

2)[ (gj ∈  G1 ) and IMPLY(gj , gr)] ==> gr ∈  G1



af de

ef
bg h

ae

eg

a b c d e f g h            af        de     aef
ae
af
ef
aef
eg
de
bg
h

x                x

x                    x

                      x   x

x                    x   x
                      x      x

                 x   x

     x                       x

                                    x Covering part

     o                    o
               o

               o

    o                     o

Closure part

A
B
C
D
E
F
G
H

Reduced to satisfiability formula

(A+B+D)G(A+F)(B+C+D+E+F)(C+D)
(E+G) H

* (B-->F)(C-->B+D)(D-->F)(F-->B+D)



Problem 11. Realization of
Synchronous Finite State Machines.

• (a) Given is machine from the left. Realize this
machine using D flip-flops and the excitation
and output functions that would depend on the
minimum total number of variables.

• (b) If you cannot minimize all these functions,
try to minimize at least some and prove that you
minimize them by some systematic method.

– You do not have to prove that your solution is
optimum but you must proceed rationally using the
methods shown in class.

– While solving this problem think about all FSM
optimizing methods discussed in our class.

• (c)Using the final schematics demonstrate that
you indeed minimized the number of arguments of
some functions. Write specifically which ones.
Prove with your comments that you understand the
principles of state assignment and not only the
procedure.

a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1



Solution to Problem 11.

a
b
c
d
e
f
g
h

d/- f/0
c/1 h/0
d/0 h/0
c/0 a/0
-/-  f/0
e/0 a/0
c/1 -/-
b/1 a/1

{afe, bg, de} are groups of compatible states from
the minimization of states. Encode A=afe, B=bg,
C=de, D=c, E=h leads to the table below:

A C/0 A/0
B D/1 E/0
C D/0 A/0
D C/0 E/0
E B/1 A/1

P0(0) = (BE, ACD)
P0(1) = (E, ABCD)

Pc(0) = BCD
Pc(1) = AE

Thus 1--> (BCD, AE) and this partition
should be taken to simplify excitation
function. The respective ff will depend only
on input signals.P(0)=(AD, BC, E),  P(1)=(ACE, BD)

P(0) generates (AD,BCE), (ADE,BC) and (E,ABCD) which was already found.
Assume (ACE, BD). Calculate product:

(BCD, AE) * (ACE, BD) = (C, BD, AE) thus B and D should be separated and states A
and E should be separated. This can be done by P0(0) or (AD, BCE)



Solution to Problem 11.

A C/0 A/0
B D/1 E/0
C D/0 A/0
D C/0 E/0
E B/1 A/1

T1= (BCD, AE)=(1,0)

T3= (ACE, BD)=(0,1)

T2= (AD, BCE)=(0,1)

A=000
 001

 011
E=010

0               1

-
-
000,0110,0

-

-
111,1 000,1

C=110
B=111

D=101
 100

010,0
010,0
000,0101,0

101,1

110,0
- -

A=000  since it occurs most times

A=000,
B=111,
C=110,
D=101,
E=010

XYZ

X + Y + Z+ =

T1,T2,T3

We expect T1 to
cause X + depending
only on input signals
because of 1-->T1

We expect T2 to
simplify the second
column

X+ = a’ which confirms our expectation
for FF encoded with T1.

Y+ =Za+ X’ a’ + Y’a’ which confirms
our expectation for simple first column
(for a’). This is because of P(0)

a

Z+ =Y a’  which confirms our
expectation for simple second column
(for a).



Solution to Problems 11 and 10.

A=000
 001

 011
E=010

0               1

-
-
000,0110,0

-

-
111,1 000,1

C=110
B=111

D=101
 100

010,0
010,0
000,0101,0

101,1

110,0
- -

Q1 Q2 Q3

X + Y + Z+ =

T1,T2,T3

a

Realization with JK FFs.

Using standard methods
for JK FFs we get:

J1 = a’

K1 = a

J2 = a’

K2 = Q1 a’ + a Q3’

J3 = Q2  a’

K3 = a + Q2’ = (Q2 a’)’

Output z



A
B

B
C

00    01   11   10

01 11 -1
01

--

a b

Transition table Output table

a b

A
B

C
D

00    01   11   10

C B
C
B

C

A
B

B
A B

A
A

C

C

B

11

Problem 12. State Assignment of
Synchronous Finite State Machines.

Given is machine M2 described with the following transition and output tables

01
01

01
01

01 -1 11

1111

1-



a b

A
B

C
D

00    01   11   10

C B
C
B

C

A
B

C
D

00    01   11   10

01 11 -1
01

--

A
B

B
A

a b

B

A
A

C

C

B

11

Solution to Problem 12.

01
01

01
01

01 -1 11

1111

1-

Partitions from Transition Table

P(00)={AD,BC}

P(01)={AB,C,(D)}

P(11)={AD,BC}

P(10)={AB,CD}

Observe that there is only
one set of proper partitions
that are determined by
partitions determined from
transition table:

T1 = {AB,CD}

T2 = {AD,BC}

Po(00)=1

Po(01)={AC,B,(D)}

Po(11)=1 (the simplest out of many)

Po(10)={AD,BC}

Thus select T2 and T3={AC,BD}

Partitions from the Output Table: Concluding, I select
partition T1 for sure and
T2  since it will simplify
two columns of
transitions.

Another choice would be
to select T1 and T3.



B

a b

Solution to Problem 12.

a b

A

C
D

00    01   11   10

C B
C
B

C

A
B

C
D

00    01   11   10

01 11 -1
01

--

A
B

B
A B

A
A

C

C

B

11
01
01

01
01

01 -1 11

1111

1-

T1 = {AB,CD}

T2 = {AD,BC} selected

T1 = {AB,CD}

T2 = {AD,BC}

0 1

0
1

Thus encoding is:

A=00,B=01,C=11,D=10

This encoding leads to
maps at right:

a b

01=B

11=C
10=D

00    01   11   10

11

00    01   11   10

01 11 -1
01

--

00

01

00

00
11

01
01

01
01

01 -1 11

1111

1-

00=A

00

00=A

01=B

11=C
10=D

01 01

01 01

01

11
11 11

11
The groups
responsible for
SOP
minimization are
shown



Solution to Problem 12.

a ba b

01=B

11=C
10=D

00    01   11   10

11

00    01   11   10

01 11 -1
01

--

00

01

00

00
11

01
01

01
01

01 -1 11

1111

1-

00=A

00

00=A

01=B

11=C
10=D

01 01

01 01

01

11
11 11

11

a ba b

01=B

11=C
10=D

00    01   11   10

11

00    01   11   10

01 11 -1
01

--

00

01

00

00
11

01
01

01
01

01 -1 11

1111

1-

00=A

00

00=A

01=B

11=C
10=D

01 01

01 01

01

11
11 11

11

Q1+ Q2+

In red

Q1+ =
Q1’ab’+Q2ab+
Q1a’b

Q1 Q2

In blue

Q2+ = a +
Q2b’+Q1a’b

repeated

z1 z2

In green

z1 = ab +
(a+b)Q2’+Q1b

Q1 Q2

As we see, simplified groups are composed of
groups from previous slide that are in turn
found from partitions

In black

z2 = 1



Solution to Problem 12.rule-based
a b

A
B

C
D

00    01   11   10

C B
C
B

C

A
B

C
D

00    01   11   10

01 11 -1
01

--

A
B

B
A

a b

B

A
A

C

C

B

11
01
01

01
01

01 -1 11

1111

1-
A

B C

D

transitions

A

B C

D

Next states

A

B C

D

outputs

Assume that transitions are twice
more important we get:

A

B C

D

Total graph

7

8

3

5

4



Solution to Problem 12.rule-based

A

B C

D

7

8

3

5

4
A

B C

D

7

8

3

5

4

B occurs most often
so is encoded by 00

00

01 11

10

We get this face of a hypercube

Which leads to encoding
A=01, B=00,C=10, D=11

This is the same set of
partitions as before, so the
result is very similar in
terms of realization cost.



Solution to Problem 12.hypercube
a b

A
B

C
D

00    01   11   10

C B
C
B

C

A
B

C
D

00    01   11   10

01 11 -1
01

--

A
B

B
A

a b

B

A
A

C

C

B

11
01
01

01
01

01 -1 11

1111

1-
A

B C

D

This leads again to solutions {T1,T2}
and {T1,T3}



Solution to Problem 12.multi-line
a b

A
B

C
D

00    01   11   10

C B
C
B

C

A
B

C
D

00    01   11   10

01 11 -1
01

--

A
B

B
A

a b

B

A
A

C

C

B

11
01
01

01
01

01 -1 11

1111

1-

(AB,CD)
(AD,BC)

(AC,BD)

X

X

X
XX

X

X

X X
X

X

X

X
X
X X

X

No pairs of proper
partitions. This method
gives nothing new.
{AD,BC} is best.{AC,BD}
worst. So solution is T1,T2



Solution to Problem 12.

Q1+ Q2+

a b

01=B

11=C
10=D

00    01   11   10

11

00

01

00

00

00=A

00

01 01

01 01

01

11
11 11

11

Q1 Q2 Q Q+   J K

0 0      0 -
0 1      1 -

10      - 1

11     - 0

Use
method of
bold
symbols
(shown in
red)

a b

01=B

11=C
10=D

00    01   11   10

1

0

0

0

0

00=A

0

0 0

0 0

0

1
1 1

1

Q1 Q2

J1 K1

J1=a(Q2+b’)

K1=Q2’+b’

a b

01=B

11=C
10=D

00    01   11   10

1

0

1

0

0

00=A

0

1 1

1 1

1

1
1 1

1

Q1 Q2
J2=a

K2=Q1’a’b

Explanation
why this is
good is the
same as
before



Problem 13. Scheduling and Register Allocation.
(a)

v1 v2

+

v3

-

v4

+

u1 u2 u3

-

u4 u5

+

u6

-

ASAP needs three
clock cycles

3 registers, 2 adders,
1 subtractor.



v1 v2

+

v3

-

v4

+

u1 u2 u3

-

u4 u5

+

u6

-

c y c le U 1 U 2 U 3 U 4 U 5
C 0
C 1

C 2

U6

C0

C1

C2

Life time analysis of variables



ALAP needs three
clock cycles

3 registers, 1 adder, 1
subtractor.

v1 v2

+

v3

-

v4

+

u1 u2

u3

-

u4

u5

+

u6

-



v1 v2

+

v3

-

v4

+

u1 u2 u3

-

u4

u5

+

u6

-

c y c le U 1 U 2 U 3 U 4 U 5
C 0
C 1

C 2

U6

C0

C1

C2

One more solution: 3 cycles, 3
registers, 2 adders, 1 subtractor.

This solution is not better. From now
on, several variants of solving this
problem are possible and I just show
one of them.



I select ALAP. Incompatibility graph is obviously 3-colorable, not less. v1 v2

+

v3

-

v4

+

u1 u2

u3

-

u4

u5

+

u6

-

Registers u1, u4 and u6 are colored yellow.

Registers u2, u5 are colored pink

Register u3 is colored green.

+ -

yellow

v1 v2 v3 v2

pink

yellow

u1

u2

pink

u2

yellowu4

v3 v4

green

u4
green

u6

pink u2
green u3

pink

u3

The schematics from left can be realized in memories,
register files or registers. Mux M3 and Demux D2 can
be simplified by reducing control variables to one each.

M1 M2 M3 M4

D1 D2

u1 u2

u4 u3u6
u5



Problem 14
Schedule and allocate resources for

each
operation, minimizing area and

latency as much as possible.

• (a) Find the solution with the
smallest area

• (b) Find the solution with the
smallest latency.
– In points (a) and (b) you are not

required to  give an optimal solution,
since that may prove to be more
difficult than can be done in a
reasonable amount of time.

– But you have to demonstrate that
your reasoning is correct, you
understand the problem and know at
least some scheduling and allocation
methods.



Solution to Problem 14
Obviously only multiplier is the only

operation for *. ALU withcost 4
does the same as comparator,
adder and subtractor of cost 6. So
the smallest area is 8+4=12.

We will need muxes for scheduling.
See next slide.

In this figure the latency is 5
(the shortest possible - ASAP),
but the cost is
3multipliers*8+2adders*2+1co
mparator*2+1 subtractor*2
=24+4+2+2=32 Maximum

dependency shown in
red limits the latency
to 5.So our trade-off is to find not slower

than 5 with cost better than 12. Let
us first find small cost solution.



>*

-

* +
+*

+ *

+ *
+

-

+
*

+,> and - allocated to ALU.Cost 12.

10 cycles.

2

7
1

11

1

2

3

4

5

6

7

8

9

10

3 5

6

10
8 9

14

13

15

12

4



>

*

-

* +

+

*

+
*

+ *
+

-

+

*

+,> and - allocated to ALU.Cost 12.

9 cycles.

2

7

1

11

1

2

3

4

5

6

7

8

9

3 5
6

10
8

9

14

13

15
12

4

One more variant. Analysis
shows that we cannot reduce
more with one multiplier and
one ALU. 6 is a lower bound
of cycles assuming one
multiplier. Let us add more
ALUs



>

*

-

*

+

+*

+ *

+

*
+

-

+

*

+,> and - allocated to ALU.Cost 12+2=14.

7 cycles.

2

7

1

11

1

2

3

4

5

6

7

3

5

6

10
8 9

14

13

15

12

4
Now I assume two ALUs
and I push operators
implemented in ALU to
top to fill two ALUs.
ALU shown in Blue.
Then I see that all
remaining are adders so
that I need only one ALU
and one adder. I needed
to shift subtractor 7 again
to cycle below to keep
one ALU and one adder.

This is a good solution. But no proof if
minimal. Using this method you can find
near minimum solution quickly.

Assuming cost 14 you can
theoretically improve only
by one cycle, but analysis
of red path and multipliers
shows that it is not
possible. So we found a
local minimum.Assuming
two multipliers you can
reduce to 5 cycles. Check
it. But cost increases by 8.

filled

filled

filled
filled

filled

Cannot be
pushed up

Cannot be
pushed up



Problem 15.
From Verilog to sequential logic circuit

module DIFFEQ (x, y, u , dx, a, clock, start);
input [7:0] a, dx;
inout [7:0] x, y, u;
input clock, start;
reg [7:0] xl, ul, yl;
always
   begin   begin
   wait ( start);
   while ( x < a )
       begin
           xl = x + dx;
          ul = u - (3 * x * u * dx) - (3 * y * dx);
          yl = y + (u * dx);
         @(posedge clock);
         x = xl; u = ul ; y = yl;
   end
endmodule

(a) Design the complete
Data Path and Controller
for this example. Any
method from the class is
applicable for any part of
the complete design
procedure.

(b) Explain your
selections of methods
and design decisions.
(c)Verify your solution.



Solution to Problem 15.module DIFFEQ (x, y, u , dx, a, clock, start);
input [7:0] a, dx;
inout [7:0] x, y, u;
input clock, start;
reg [7:0] xl, ul, yl;
always
   begin   begin
   wait ( start);
   while ( x < a )
       begin
           xl = x + dx;
          ul = u - (3 * x * u * dx) - (3 * y * dx);
          yl = y + (u * dx);
         @(posedge clock);
         x = xl; u = ul ; y = yl;
   end
endmodule

a dx
8888 88

x y u

clock

start

xl ul yl
8 8 8

x
<

( x < a )

enable

+

+

*

-

Circuit optimized for speed. Some standard transformations of data
path used. I selected this method to avoid time-consuming design of a
control unit. Standard register with enable is used.

3

**
3ydx

3xudx *

*

+

u y
x,u and y are the same io signals as on top

Internal
clock

latch


