GSE – Documentation and User’s Manual
By Martin Lukac (2003)
GSE – is a genetic algorithm (GA) developed for the quantum gates and circuits synthesis. It has a certain number of features that are described here. It uses a particular representation of individuals in the population in order to facilitate all genetic operators. Designed such as, it is very helpful tool not only for quantum logic synthesis but also for the understanding of the GA.

Features:

· Operators
· Mutation
· Normal, Bitwise
· Crossover
· Single point, multiple point
· Repair methods
· Preserves the circuits integrity
· Fitness function
· Simple (error)
· Complex (error, cost)
· Shared - grouped
· Selection operators
· RW (Roulette wheel)

· SUS (Stochastic universal sampling)
· Pareto-optimality with Tournament
· Threshold
· Interface
· Console 
· Type the command and input the input file then the output file
· All commands are given in the input file (refer to the input file template)

1. Operators

Here is the description of all used operators in this GA. S can be later seen and will be explained the probabilities of these operations are to be set in the input file.

a. Mutation

Operator used to insert noise, bias and to prevent convergence to a local minimum. Generally should be set to a relatively low value [0.01 – 0.3] compared to Crossover [0.3 – 0.7]. Different possible mutation operators are available in the literature and in the public use. Here are described only few of them because I think the way how you add noise in a problem is not extremely important although can have a crucial role.

a) Normal

Normal mutation is considered here the most classical type of mutation. For each individual in the population a random number is generated. If this number is smaller than the Mutation probability then another random number is generated. This last one will serve to determine a position in the circuit where the mutation will be made. The last point of this method is to take the element pointed on and switch its value randomly to some other one. Simple, ain’t it?

b) Bitwise
Similar to the previous type of mutation but for each individual there are n random numbers generated for each element in their representation. Consequently there is a bigger chance of introducing noise by this method.

b. Crossover
Crossover is tone of the vital operations giving the GA such a big use and a high level of success. Crossover is as its name said the recombination of two or more individuals from the population by crossing their respective representations. The configuration now allows to set the crossover parameter to 0 or to 1 (cf. README.txt).
c) Single point

Assume we have two individuals we want to “Crossover”; for each of them generate a random number in the range of the size of their respective representations. Then exchange the parts of their representation after or before this point.
d) Multi point

As with single point crossover but in this case select 2 or more randomly located points in the concerned individuals representation and exchange each even part between the two parents. This method will not be often used in our algorithm becaue of the various lengths of the chromosomes.
e) Multi parent

In the previous methods only 2 parents were always considered. In this type of crossover we assume an arbitrary number of parents is selected for the crossover and then a a multipoint crossover is applied. The parts taken from one of the parents is then randomly selected. (Not yet implemented)
c. Repair method

This method checks for the correctness of the circuit and is not used in the most cases because all operators are mostly precise, but there are basically three modes of repairing a circuit based on the type of error. These are: missing gate, additional gate and ill formed segment. In the lowest version of the repair model if one error is located then the whole segment is removed. Otherwise the method either adds an empty wire until the segment is good again or it removes the additional gate.
2. Fitness function
a. Simple
This fitness function describers simply the error measure for evolved circuits. It is based on the one to one comparisons between the elements of the matrix in the evolved circuit and in the final one. Moreover here the fitness is normalized to the range [0,1] by dividing the resulting error by the total number of elements in the matrix. This fitness function is good for a simple evaluation of error but do not shows different aspects such as distance from the goal, complexity and so on. Current configuration allows the following values of fitness 0, 1, 2 and 3 (cf. README.txt).
b. Complex
This type of function is more complex and represents the integration of the cost function into the fitness value of each circuit. Consequently fitness function has 2 components: error and cost. In order to explore the problem space and the possibilities of different representations for a given circuit both compounds of the fitness can be scaled by two factors α and β both in [0,1] and α + β = 1.

c. Grouped – Shared

The last proposed approach to calculating of the fitness is a “this application specific” function. The goal is to explore the relation between different individual/circuits. For this during evaluation of one individual we add to his representation each other’s individual representation and we calculate the fitness. After adding each individual at once to this string we calculate a shared fitness by dividing the total accumulated fitness by the number of individuals.
3. Selection operators
The actual possible values for replication are 0 or 1 (cf. README.txt).
a. Roulette wheel
The classical and most commonly used method of selection of individuals from the population. The approach is simple; on a scale one represent all individuals and each individual allocates a size of the scale proportional to its fitness. Then by generating a random number in the interval 0 and the sum of all fitness we select an individual pseudo-randomly.

b. Stochastic Universal Sampling 
A method aimed toward the elimination of the birth of a super individual that will be selected most of the times to be reproduced. For this All individuals are represented on a scale where each individual has allocated a space proportional to its fitness. Then for selecting n individuals at once n pointers equally spaced are placed over the scale and individuals that had been pointed are selected.
c. Pareto optimality

This method is used for a multi-objective optimization so as to select globally optimal individuals. For this it is assumed each individual has n parameters to be optimized. The selection proceeds by comparing each individual to all others. Each time an individual’s all parameters are superior to another’s one his rank is increased by 1. After this procedure is done all individuals have a rank assignments and the selection is then based on these rank values with a selection method that can be any of the previously one discussed. You will have to set the parameter pareto to 1 in order to enable pareto-optimal GA (cf. README.txt).
d. Threshold
This approach requires the selection of all best individuals (with the fitness above a set up value) for the replication. The goal is to accelerate the selection only of the best individuals. Consequently the next generation will be only offspring of these most fit individuals. If you want to use threshold selection set threshold parameter to 1 (cf. README.txt).

4. Other types of available parameters

Population size is indicated by population parameter and can be now set up to a value up to 2000.

Alpha, Beta, Alpha1 and Beta1 are four parameters concerning respectively Alpha and Beta the fitness tuning and Alpha1 and Beta1 the pareto-selection criterion (cf. README.txt).

The header file StdAfx.h defines all limits you can modify in order to increase the capacity of some arrays or to decrease the memory allocation.

For any other remarks and problems please contact me at lukac242@netscape.net
