
EE 817 Emerging Computer Technologies (Spring 2003)

[LAST HOMEWORK - SECOND CLASS PROJECT]
Evolutionary and Exhaustive Search for Quantum Circuit Synthesis with Genetic Algorithms
Project Number 4
Exploring Genetic Algorithm (GA) for Quantum Circuits by Modifying Parameters and Settings

GOAL: A detailed exploration of results obtained using different parameters and setting for a GA.

Hilton T. Goi (20034505)

Kyusik Chung (20035271)

Ph.D. 1st year students

Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology

Submitted on 2003/7/7
Index

1. Introduction ... 2

2. Matrix Representation of Basic Quantum Gates and Universal Gates 3

3. Software of Exhaustive Search for Quantum Circuits Synthesis with GA …...... 6

4. Simulations Conditions ... 8

5. Simulations Results .. 10
 5.1 Characteristics of Fitness, Cost and Error Values 10
 5.2 Analysis on the influences of parameters types 12

 5.3 Characteristics of Factors Alpha and Beta, and GA Probabilities 19

 5.4 Population Size and Computational Time 23

 5.5 Use of Different Quantum Gates to Search for Quantum Circuit Synthesis ... 24
6. Conclusions .. 24

Acknowledgements .. 25

References .. 25

Appendix 1 .. 26
Appendix 2 .. 30
1. Introduction

This is the final group project of the graduate coursework EE817 Emerging Computing Technologies held at the Korea Advanced Institute of Science and Technology (KAIST) in Spring Semester 2003, by Professor Marek Perkowski. The motivation of this project is to contribute with the research of Professor Marek Perkowski and Ph.D. Martin Lukac, of Portland State University, Department of Electrical and Computer Engineering, Portland, OR, USA. This research regards to automated quantum circuits synthesis, with the objective of finding an effective and efficient method of designing quantum circuits that can be applied in (1) optimization of quantum circuits for existing quantum computer technologies, (2) modeling of quantum computers in FPGA-based reconfigurable hardware, and (3) design of new optimized gates and circuits for theoretical investigations and for use in future quantum computers [1].
We use the Genetic Algorithm (GA) provided by Ph.D. Martin Lukac [2], with the objective of searching for combinations of basic quantum gates that result in universal gates, such as Toffoli, Fredkin and Margolus. The objective of this project is to perform a detailed exploration of results obtained using different parameters and setting for a GA.

2. Matrix Representation of Basic Quantum Gates and Universal Gates
In Professor Marek Perkowiski lectures (EE817 Emerging Computing Technologies, Spring 2003) we have learned about quantum computing, and the classical quantum gates [3]. In Table 1 we list the standard quantum gates to be used in this project. The representation of each gate is in the form of matrix representation that will be directly used in simulation with GA.
The gates listed in Table 1 were provided by Ph.D. Martin Lukac, not that here not all the known quantum gates are used, we follow Ph.D. Martin Lukac research resources and data as the conditions of simulations in our project.

Each gate has a specific name, however we will more frequently refer to a gate by its code, which is a single letter and thus, easy to represent. Also it is listed below the number of wires and the cost of each gate, that will be used in the calculation of the total cost of a final circuit when we find a solution for a universal gate, listed in Table 2.
The goal of this project is to find combinations of quantum gates listed in Table 1 that will result in a circuit equivalent to a Universal Gate, as listed in Table 2. This will be performed by using a program in C++ language that is based on GA, which details are explained in the next section.

Table 1 Matrix representations of quantum gates
	Code
	Name of Gate
	Number of Wires
	Cost
	Matrix Representation

	W
	Pauli - x
	1
	0
	0 1

1 0

	B
	C - V
	2
	1
	1 0 0 0

0 1 0 0

0 0 5 -5

0 0 -5 5

	C
	C – not V
	2
	1
	1 0 0 0

0 1 0 0

0 0 -5 5

0 0 5 -5

	D
	
C- not
	2
	1
	1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

	E
	C – not inverted
	2
	1
	1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

	F
	SWAP
	2
	1
	1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

	G
	C – V - inverted
	2
	1
	1 0 0 0

0 5 0 -5

0 0 1 0

0 -5 0 5

	H
	C - not V - inverted
	2
	1
	1 0 0 0

0 -5 0 5

0 0 1 0

0 5 0 -5

	I
	ob C - V
	3
	1
	1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 5 -5 0 0

0 0 0 0 -5 5 0 0

0 0 0 0 0 0 5 -5

0 0 0 0 0 0 -5 5

	J
	ob C – not V
	3
	1
	1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 -5 5 0 0

0 0 0 0 5 -5 0 0

0 0 0 0 0 0 -5 5

0 0 0 0 0 0 5 -5

	K
	ob controlled C - not
	3
	1
	1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

	L
	ob controlled inversed C - not
	3
	1
	1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

	M
	ob inversed C - V
	3
	1
	1 0 0 0 0 0 0 0

0 5 0 0 0 -5 0 0

0 0 1 0 0 0 0 0

0 0 0 5 0 0 0 -5

0 0 0 0 1 0 0 0

0 -5 0 0 0 5 0 0

0 0 0 0 0 0 1 0

0 0 0 -5 0 0 0 5

	N
	ob inversed C – not V
	3
	1
	1 0 0 0 0 0 0 0

0 -5 0 0 0 5 0 0

0 0 1 0 0 0 0 0

0 0 0 -5 0 0 0 5

0 0 0 0 1 0 0 0

0 5 0 0 0 -5 0 0

0 0 0 0 0 0 1 0

0 0 0 5 0 0 0 -5

Table 2 Matrix representations of universal gates
	Name of Gate
	Number of Wires
	Matrix Representation

	Toffoli
	3
	1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

	Fredkin
	3
	1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

	Margolus
	3
	1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

3. Software of Exhaustive Search for Quantum Circuits Synthesis with GA
We make a detailed search of quantum circuit synthesis by using software named GSE based on GA, provided by Ph.D. Martin Lukac. The console interface of this software is an input file, with the set of quantum gates listed in Table 1, which will be used in the search of Quantum Circuits Synthesis equivalent to the desired Universal Gates listed in Table 2. We go through all the options and parameters listed below, and then establish an extensive search of the results provided by the GA and your results in a tabular form. All the commands are to be stated in the input file, and all the results are to be eventually described in the output file.

We also go through all the required parameters that can be modified, and make selections about which one to use now and which one to use later. A closer look to options and parameters described below shows that there are four sections proposed you and those are: probabilities, selection pressure, mixed generations and genetic operators.
· Parameters to modify

· Probabilities

· Mutation

· Crossover

· Selection threshold

· Selection pressure

· Roulette wheel

· Universal Stochastic Sampling

· Tournament

· Threshold

· Mixed generations

· Comparing children with parents

· Shared fitness

· Genetic operators

· Mutation

· Normal, bitwise

· Crossover

· Normal, Multi-point

Furthermore, detailed information about some mode of selections and specifications are described as follows.

TOURNAMENT:
Each individual is compared to all individuals in the population and its fitness is based on the fact how many times it is better than all others. (not yet functional)

THRESHOLD: Make selection among individuals that have all fitness higher than Δ (you are the one who is selecting Δ)

UNIVERSAL STOCHASTIC SAMPLING: Select a number N of individuals you want to select at once. Distribute all individuals over a scale where the proportion of the allocated space is proportional to their fitness. Place N pointers equally spaced on this scale and select individuals where the pointers are.

MUTATION: Bitwise: apply mutation to each bit of the string
Now, assume that we take the GA with roulette wheel, a population of 100 and we make experimentations by modifying parameters such as mutation, crossover and selection threshold probabilities (GA probability parameters to be selected), i.e. we are exploring the first section. Then with some fixed (or with small number of possible variations of mutation, crossover) values go to the next Section of our choice and experiment on different modes of reproduction or on different genetic operators, and so on. In this report we include all results good or bad, especially the time of a run (in generation number), if the result was found and all technical tuning of the GA we were doing. All tests are performed over a set of 20 runs, and all results will be listed in a statistical tabular form in order to report in a special section the best results found. It is important to consider that a good result can not be found for each run.
As a recapitulation, we organize the main points that have to be performed and verified in this project.

● Establish an extensive search of the results provided by the GA and the results in a tabular form.
● Use a set of gates to perform exhaustive search of quantum circuit synthesis.
● Go through all required parameters to be modified and make selections about which one to use now and which one to use later.
● Consider the four sections proposed to be changed and analyzed: Probabilities, Selection pressure, Mixed generations and Genetic operators.
● Report all results good or bad, especially the time of a run (in generation number), if the result was found and all technical tuning of the GA you was doing.
● Perform all tests over a set of 20 runs.
● Report all results in a statistical tabular form in order to report in a special section the best results you have found.
● No expectation of finding a good result for each run.
● Exceptionally good or bad results will be denoted apart.

● Report all the experimental descriptions of your projects, arguments for and against what you have been doing.

 The results expected in this project are as follows:

· A detailed description of our experimental approach.
· Arguments for or against the use of different configuration of GA in quantum circuit synthesis.
· Graphical representation of the results.
· Analysis of the results.
· Report structured results with comparison, analysis, and statistical approximations.
4. Simulations Conditions
There is large number of options and parameters to be changed, tested and analyzed in this project. This suggests us to organize the options into groups and share the work of simulation and analysis into different tasks for every member of the project group. First of all, we organize the options and parameters into three groups, as listed in Tables 3(a), 3(b) and 3(c). A detailed explanation of each parameter is described in Appendix 1.
Table 3 (a) Options and Parameters (Group 1)
	Population Size
	50
	Type of GA
	Normal

	Mutation Probability
	0.05
	Type of mutation
	Normal

	Crossover Probability
	0.8
	Type pf crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	RW

	Factor Beta
	0.03
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

Table 3 (b) Options and Parameters (Group 2)

	Population Size
	70
	Type of GA
	Normal

	Mutation Probability
	0.05
	Type of mutation
	Normal

	Crossover Probability
	0.8
	Type pf crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	RW

	Factor Beta
	0.03
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

Table 3 Options and Parameters (Group 3)

	Population Size
	100
	Type of GA
	Normal

	Mutation Probability
	0.05
	Type of mutation
	Normal

	Crossover Probability
	0.8
	Type pf crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	RW

	Factor Beta
	0.03
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

Now we are ready to perform simulation using GSE software for exhaustive search of quantum circuit’s synthesis.

5. Simulations Results
 In this first set of simulations, we perform exhaustive search for quantum circuit synthesis equivalent to Toffoli Gate.
5.1 Characteristics of Fitness, Cost and Error Values

 Our first simulation has the objective if analyze the characteristics of Fitness, Cost and Error values. As the GSE software used in this project is not self evolvable, the parameters values chosen are fixed from the beginning until the end of simulation run. The software has the task of trying all the possible combinations of quantum circuits given in the input file, and displays the resultant synthesized quantum circuit in the output file. Also we run the program several times, several and do not change. We use the parameters of Group 3, and perform 20 runs in total. However, as a plot of 20 lines in one single graph cannot be easily analyzed, we limit the number of lines to be plotted in 30%, thus 14 lines. In Fig. 1 we show the characteristic of Fitness values. The horizontal axis represents the number of generations, and the vertical axis the best value of fitness within sets of 100 generations. The values plotted here were automatically output by the software, which automatically compare and select the best values of fitness for every hundred of generations. In Fig. 1 we observe that for every run, different values of fitness are achieved, what justifies the necessity of 20 runs for simulation analysis. The highest value of fitness in the total is 0.275, thus this can be considered the best value of the best combination of quantum gates to form one circuit synthesis. However, with these parameters it was not possible to find a solution for the desired universal gate, Toffoli gate in this case.
 If Fig. 2 we show the characteristics of Error Value for the same runs as in Fig. 1. Note that the relation between fitness and error values are inversely related, that is for higher fitness values we achieve lower error values. In Fig. 3 we show the characteristics of Cost Value for the same procedure, and we observe that cost value is not related to fitness or error values.

In all the graphs we observe that there is not a tendency of optimization (convergence) of the values according to the number of generation, thus this is not considered iteration. The good and bad values of fitness, error and cost come in random order and are not possible to be predicted. The only possibility is to make a statistical and average analysis and then choose the best values of parameters that may lead to solutions to the desired gates. The next set of simulation deals with variations in the parameters, with the objective of finding possibilities of finding solutions.

[image: image1.emf]Fitness of Best Synthesized Quantum Circuit

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000 10000

Number of Generations

Fitness Value

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Run 9

Run 10

Run 11

Run 12

Run 13

Run 14

Fig. 1 Fitness value of best synthesized quantum gate within hundred generations steps
 [image: image2.png]0.35

03

0.25

02

Error Value

Bror Value of Best Synthesized Quantum Circuit

——Run1
—=—Run 2
Run 3
~ Run4
—+—Run 5
——Runé6
——Run7
—Run 8
~——Run9
Run 10
Run 11
Run 12
Run 13
Run 14

i "
i TRy f%
0 20‘00 40‘00 60‘00 80‘00 10(;00

Nurber of Generations

Fig. 2 Cost value of best synthesized quantum gate within hundred generations steps

[image: image3.emf]Cost of Best Synthesized Quantum Circuit

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

Hundreds

Number of Generations

Cost (in Quantum Gates)

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Run 9

Run 10

Run 11

Run 12

Run 13

Run 14

Fig. 3 Error value of the best synthesized quantum gate within hundred generations step

5.2 Analysis on the influences of parameters types

Repeating several times (20 runs for instance) the simulation in order to exhaustively search for quantum circuit synthesis with GA is a necessary condition, however it is not enough. In order to find solutions to universal gates by exhaustive search, we need a more dynamic and detailed analysis of the parameters used in GA. We use the same three groups of parameters, now with the types of GA, mutation, replication, threshold and fitness as variables. The three groups of parameters are set up in Tables 4 (a), 4 (b) and 4 (c) for these simulations. The present version of the GSE software does not support different types of crossover, grouped and Pareto are not variables, thus these parameters have their characteristics fixed as described in Tables 4 (a), 4 (b) and 4 (c). Moreover, only two types of fitness functions are to be used, they are the simple and complex fitness functions as described in Appendix 2. The GA parameter from the input file corresponds to the fact if the GA will or not be using minimized circuit cost.
We have now 5 variables, all 2 with possible values, thus in total we are to test 2 to power 5 = 32 total combinations. A more detailed explanation of the combinations of variable parameters are available at Table 5. We can set values ‘0’ or ‘1’ to each parameter, and the software will adjust the calculation.

Table 4 (a) Options and Parameters (Group 1)

	Population Size
	50
	Type of GA
	Variable: 0 – Normal, 1 - Darwinian

	Mutation Probability
	0.05
	Type of mutation
	Variable: 0 – Normal, 1 - Bitwise

	Crossover Probability
	0.8
	Type of crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	Variable: 0 – RW, 1 - SUS

	Factor Beta
	0.03
	Type of fitness
	Variable: 1 – Simple, 3 – Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Variable: 0 - Not Used, 1 – Threshold 0.8

Table 4 (b) Options and Parameters (Group 2)

	Population Size
	70
	Type of GA
	Variable: 0 – Normal, 1 - Darwinian

	Mutation Probability
	0.05
	Type of mutation
	Variable: 0 – Normal, 1 - Bitwise

	Crossover Probability
	0.8
	Type of crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	Variable: 0 – RW, 1 - SUS

	Factor Beta
	0.03
	Type of fitness
	Variable: 1 – Simple, 3 – Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Variable: 0 - Not Used, 1 – Threshold 0.8

Table 4 (c) Options and Parameters (Group 1)

	Population Size
	100
	Type of GA
	Variable: 0 – Normal, 1 - Darwinian

	Mutation Probability
	0.05
	Type of mutation
	Variable: 0 – Normal, 1 - Bitwise

	Crossover Probability
	0.8
	Type of crossover
	1 point

	Factor Alpha
	0.97
	Type of replication
	Variable: 0 – RW, 1 - SUS

	Factor Beta
	0.03
	Type of fitness
	Variable: 1 – Simple, 3 – Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Variable: 0 - Not Used, 1 – Threshold 0.8

Table 5 Classification of Variable Parameters Types

	Variable Parameters
	Setting value to 0
	Setting value to 1

	Type of GA
	Normal
	Darwinian

	Type of Mutation
	Normal
	Bitwise

	Type of Replication
	RW
	SUS

	Type of Threshold
	No Threshold
	Threshold = 0.8

	Type of Fitness
	Simplest Function
	Complex Function

Another representation of the combinations is made in binary number form, with values from ‘00000’ to ‘11111’. The order of the digits from left to right means: Type of Fitness, Type of Threshold, Type of Replication, Type of Mutation, and Type of GA, as expressed in Fig. 4.

[image: image6.wmf]Cost

error

Max

Error

F

1

)

_

1

(

b

a

+

-

=

Fig. 4 Binary number expression of Combinations of GA Parameters Types.

For example, the parameter setting 5 (00101) means: Type of Fitness = 0 (simple), Type of Threshold = 0 (No threshold), Type of Replication = 1 (SUS), Type of Mutation = 0 (Normal), Type of GA = 1 (Darwinian). Another example, the parameter setting 29 (11101) means: Type of Fitness = 1 (3 - complex), Type of Threshold = 1 (Threshold = 0.8), Type of Replication = 1 (SUS), Type of Mutation = 0 (Normal), and Type of GA = 1 (Darwinian).
We will perform 20 runs of simulations for these 32 combinations, and for the three groups, what means in total 1920 runs. Obviously only the best results among the 20 runs will be displayed, as shown in Fig. 5 for fitness and in Fig. 6 for cost.
[image: image4.emf]0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Combinations of Parameters Types

Maximum Fitness Value

Group 1 Maximum Group 2 Maximum Group 3 Maximum

Fig. 5 Maximum fitness values for all combinations of parameters types.
[image: image5.emf]0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

Combinations of Parameters Types

Maximum Cost Value

Group 1 Maximum Group 2 Maximum Group 3 Maximum

Fig. 6 Maximum cost values for all combinations of parameters types.
In Fig. 5 we observe that there is not a big variation in the value of fitness in general, only a few peaks with maximum value 1.0. These peaks mean that in the output we have achieved the quantum gates combination that exactly fits the desired quantum circuit with is equivalent to Toffoli gate. The error value is 0.0 when fitness is 1.0, and 0.0625 for all other cases. For Groups 1, 2 and 3 we have 1, 3 and 4 solutions respectively. Thus we understand that for a larger population size the probability of achieving a solution is higher. The solutions discovered through this simulation are described in Table 6 to Table 14.
Table 6. Solution 1 for Toffoli Gate
	Solution 1 for Toffoli
	Achieved from Group 1
	At Generation Number 17

	Parameter Setting 11 (01011)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWCppWCppWCppWCppWCppEBppWCppEBppWCppWCppKp

	Fitness: 1.0
	Error: 0.0
	Cost:13

Table 7. Solution 2 for Toffoli Gate

	Solution 2 for Toffoli
	Achieved from Group 2
	At Generation Number 3388

	Parameter Setting 11 (01011)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pEBppEBppEBppEBppEBppEBppEBppEBppEWppWDppEBppEBppEBpp

EBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEBppEB

ppEWppJppEBppEBppEBppEBppWWWppWCp

	Fitness: 1.0
	Error: 0.0
	Cost:69

Table 8. Solution 3 for Toffoli Gate

	Solution 3 for Toffoli
	Achieved from Group 2
	At Generation Number 9449

	Parameter Setting 18 (10010)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 0 (No Threshold)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 0 (Normal)

	Circuit Representation: pKppFWppFWppWCppFWppWCppWWWppJppFWppWCppWCppWDp

	Fitness: 1.0
	Error: 0.0
	Cost:11

Table 9. Solution 4 for Toffoli Gate

	Solution 4 for Toffoli
	Achieved from Group 2
	At Generation Number 1338

	Parameter Setting 27 (11011)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pJppJppFWppJppFWppJppJppJppJppJppWDp

	Fitness: 1.0
	Error: 0.0
	Cost:11

Table 10. Solution 5 for Toffoli Gate

	Solution 5 for Toffoli
	Achieved from Group 3
	At Generation Number 7045

	Parameter Setting 7 (00111)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 0 (No Threshold)
	Type of Replication: 1 (SUS)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWDppLppLppLppLppEBppLppLppLppLppL

ppLppLppLppLppLppLppLppLppLppLppWDppLppLppLppLppLppLppLppLppLppLppLppLppL

ppLppWDppLppLppLppLppLppWDppLppLppLppLppLppLppLppLppKppCBppCWp

	Fitness: 1.0
	Error: 0.0
	Cost:56

Table 11. Solution 6 for Toffoli Gate

	Solution 6 for Toffoli
	Achieved from Group 3
	At Generation Number 5697

	Parameter Setting 10 (01010)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 0 (Normal)

	Circuit Representation: pJppJppWDppFWppJppFWppJp

	Fitness: 1.0
	Error: 0.0
	Cost:7

Table 12. Solution 7 for Toffoli Gate

	Solution 7 for Toffoli
	Achieved from Group 3
	At Generation Number 9468

	Parameter Setting 11 (01011)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWWWppBFppJppFBppJppWCppJppJppJppJppWCppWCppJppWCppJppWCppFBp

	Fitness: 1.0
	Error: 0.0
	Cost:19

Table 13. Solution 8 for Toffoli Gate

	Solution 8 for Toffoli
	Achieved from Group 3
	At Generation Number 2792

	Parameter Setting 17 (10001)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 0 (No Threshold)
	Type of Replication: 0 (RW)

	Type of Mutation: 0 (Normal)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWDppWDppEWppWDppWDppWDppEWppWDppWDppWDppKp

	Fitness: 1.0
	Error: 0.0
	Cost:11

Table 14. Solution 9 for Toffoli Gate

	Solution 9 for Toffoli
	Achieved from Group 3
	At Generation Number 7547

	Parameter Setting 27 (11011)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWWBppWWBppJppGWppFWppKppWWBppFWppWWBppJppGBppWWBp

	Fitness: 1.0
	Error: 0.0
	Cost:13

The notation ‘p’ stands for separation of gates, it is not a computational function and has cost zero. The other codes stand for the quantum gates used in the search, and are described in Section 2 Table 1. The influence of each parameter is still not completely clear, as the results come in different cases of parameters settings. There is a possibility of parameters co-influence each other. However, it is still possible to make a selection of the best parameters, as the types of mutation and replication seem to follow a rule, with only one exception among the achieved 9 solutions. The best type of Mutation is Bitwise, and the best type of Replication is RW. The other parameters seem not follow any rule, thus it is reasonably to consider them as still further topics of study and research. The type of fitness function has a small influence, we can observe from Fig. 5 that with the complex fitness function the software becomes more sensible to changes of circuit structure, as we observe that the right half of the x axis shows the larger variation of fitness values. However, the complex fitness function does not lead to better achievement of desired circuits, or to optimization of quantum circuits.
From Fig. 6 we note there is no relation between the values of fitness and cost. For the solutions achieved in the simulation, we observe that there are solutions with high values of cost (maximum was 69), while others have smaller values (minimum was 7). Remind that an optimum quantum gates is that which has the least cost as possible. Thus, the best solution we have achieved is solution number 6, with cost 7 for Toffoli gate.
Furthermore, it was not possible to note a relation between the parameters and the values of costs. The reason is pretty simple, cost is chosen by the software when the combination of quantum gates to form a circuit, and the possibility of achieving a desired gate with small cost is valid.
An important observation is that the Parameter Setting Number 11 (01011) has shown outstanding features with three solutions for all the three groups of parameters. This is the best Parameter Setting Combination, and gives us confident that if we use this Parameter Setting Combination we very probably will find more quantum circuit synthesis solutions. As an experimental example, we simulated the search with the small change in the population size. We set population size to 1000 and the result was successful. We achieved the following solution.

Table 15 A special test of efficiency of Parameter Setting 11 (01011)

	Solution 10 for Toffoli
	Population Size = 1000
	At Generation Number 1719

	Parameter Setting 11 (01011)
	Type of Fitness: 0 (Simple)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 1 (Darwinian)

	Circuit Representation: pWBBppFBppFWppWBBppBDppKppEBppLppBDppBDppFWppBDppGWp

	Fitness: 1.0
	Error: 0.0
	Cost:21

5.3 Characteristics of Factors Alpha and Beta, and GA Probabilities

The next set of simulation deals with the influence of parameters Alpha and Beta, again the population size, the Mutation Probability and Crossover Probability.
We repeat the 20 simulation runs of exhaustively search for quantum circuit synthesis with GA. We use the same three groups of parameters, now with the factors Alpha and Beta, Mutation Probability and Crossover Probability as variables. Now we have four variables. The three groups of parameters are set up in Tables 16 (a), 16 (b) and 16 (c) for these simulations.
Table 16 (a) Options and Parameters (Group 1)

	Population Size
	50
	Type of GA
	Normal

	Mutation Probability
	Variable [0.01 - 0.3]
	Type of mutation
	Normal

	Crossover Probability
	Variable [0.2 - 0.9]
	Type of crossover
	1 point

	Factor Alpha
	Variable [0 - 1]
	Type of replication
	RW

	Factor Beta
	Variable [0 - 1]
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

Table 16 (b) Options and Parameters (Group 2)
	Population Size
	70
	Type of GA
	Normal

	Mutation Probability
	Variable [0.01 - 0.3]
	Type of mutation
	Normal

	Crossover Probability
	Variable [0.2 - 0.9]
	Type of crossover
	1 point

	Factor Alpha
	Variable [0 - 1]
	Type of replication
	RW

	Factor Beta
	Variable [0 - 1]
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

Table 16 (c) Options and Parameters (Group 3)
	Population Size
	100
	Type of GA
	Normal

	Mutation Probability
	Variable [0.01 - 0.3]
	Type of mutation
	Normal

	Crossover Probability
	Variable [0.2 - 0.9]
	Type of crossover
	1 point

	Factor Alpha
	Variable [0 - 1]
	Type of replication
	RW

	Factor Beta
	Variable [0 - 1]
	Type of fitness
	Complex

	Factor Alpha1
	Not Used
	Type of grouped
	Individual

	Factor Beta1
	Not Used
	Type of Pareto
	Not Used

	Divider
	6
	Type of threshold
	Not Used

As explained in Appendix 2, the factors Alpha and Beta are respectively scaling weights of error and cost evaluation in the whole fitness function. These factors are able to make the fitness function less or more sensitive to both of these components. We analyze the influence of these factors in the search of quantum circuit synthesis.

We will not repeat the plot of fitness and cost because they resemble the characteristics shown before in Figures 5 and 6. Only a resume of the characteristics of Alpha and Beta factors and their best, worst and average values are to be listed in Table. 17. We chosen four sets of Alpha and Beta parameters, they are Alpha=0.7 Beta=0.3, Alpha=0.8 Beta=0.2, Alpha=0.9 Beta=0.1, and Alpha=0.97 Beta=0.03. Note that the relation between Alpha and Beta is that Alpha + Beta = 1.0.
We observe from the results in Table 17 that the fitness value is increased as the ALPHA value is increased. However, the best fitness of all generations is better at less alpha value, thus there is a two fold (advantage and drawback) characteristic in increasing factor Alpha.

Next we analyze also the influences of the Probabilities of Mutation and Crossover on the Fitness Value. Only a resume of the characteristics of Mutation and Crossover Probabilities and their best, worst and average values are to be listed in Table. 18 and 19 respectively

Table 17 Characteristic of Fitness F with relation to Factors Alpha and Beta
	F
	Group 1
	Group 2
	Group 3

	α
	Best
	Worst
	Average
	Best
	Worst
	Average
	Best
	Worst
	Average

	0.7
	0.44
	0.0777778
	0.148206074
	0.377778
	0.0636364
	0.144381594
	0.188142
	0.0333704
	0.141694126

	0.8
	0.163663
	0.0727273
	0.159274043
	0.163663
	0.0652016
	0.160634195
	0.272727
	0.0615385
	0.161248625

	0.9
	0.181832
	0.18
	0.18007352
	0.28
	0.18
	0.18110992
	0.216788
	0.18
	0.18144116

	0.97
	0.224
	0.194
	0.19431102
	0.194549
	0.194
	0.19403843
	0.194549
	0.194
	0.19403294

Table 18 Characteristic of Fitness F with relation to Mutation Probability (MP)
	F
	Group 1
	Group 2
	Group 3

	MP
	Best
	Worst
	Average
	Best
	Worst
	Average
	Best
	Worst
	Average

	0.01
	0.194549
	0.194
	0.19401098
	0.194549
	0.194
	0.19401098
	0.194549
	0.194
	0.19401098

	0.05
	0.224
	0.194
	0.19431102
	0.194549
	0.194
	0.19403843
	0.194549
	0.194
	0.19403294

	0.1
	0.224
	0.194
	0.19503785
	0.224
	0.194
	0.19491647
	0.224
	0.194
	0.19432749

	0.3
	0.224
	0.194
	0.19491651
	1
	0.194
	0.19491651
	0.224
	0.194
	0.19465308

Table 19 Characteristic of Fitness F with relation to Crossover Probability (CP)

	F
	Group 1
	Group 2
	Group 3

	CP
	Best
	Worst
	Average
	Best
	Worst
	Average
	Best
	Worst
	Average

	0.5
	0.194549
	0.194
	0.19401098
	0.194549
	0.194
	0.19401647
	0.224
	0.194
	0.19491647

	0.6
	0.224
	0.194
	0.19403294
	0.194549
	0.194
	0.19402749
	0.194549
	0.194
	0.19403843

	0.8
	0.224
	0.194
	0.19432749
	0.194549
	0.194
	0.19403843
	0.194549
	0.194
	0.19403294

	0.9
	0.194549
	0.194
	0.19465308
	0.194549
	0.194
	0.19402749
	0.194549
	0.194
	0.19402196

From Tables 18 and 19, we conclude that the best Mutation Probability is 0.1 or 0.3, and the best Crossover Probability is 0.8. However, it is a little hard to fix them because the result is not so different, there is not a big variation in the performance of search regarding to fitness value, with changes in the Mutation and Crossover Probabilities.
By changing the values of Factors Alpha and Beta, and Probabilities of Mutation and Crossover, we achieved another solution to the Toffoli gate as described in Table 20.

Table 20 A solution by changing Factors Alpha and Beta, and Probabilities of Mutation and Crossover.

	Solution 11 for Toffoli
	Achieved from Group 2
	At Generation Number 1025

	Alpha = 0.97
	Beta = 0.03

	Mutation Probability = 0.3
	Crossover Probability = 0.8

	Circuit Representation: pEBppEBppWCppWCppWWWppKppEBppWCppEBppWCp

	Fitness: 1.0
	Error: 0.0
	Cost:13

We have made clear so far what are the good values of Factors Alpha and Beta, and Mutation and Crossover Probabilities. If we use the best value of Mutation Probability = 0.3, and the best value of Crossover Probability = 0.8, we can achieve solutions, and shown in Table 20. Also, if we increase the factor Alpha, and the population size, it is better for exhaustive search of quantum circuit synthesis. Using the best values and types of parameters can probably lead us to more solutions to Toffoli gate, and we performed an extra and more specific simulation regarding this. We performed simulations with these new parameters settings, and found two more solutions as described in Tables 21 and 22. In order to obtain solutions with small number of cost, we choose a smaller Divider = 3, and we will see if there is any influence by changing this parameter too.
Table 21. Solution 12 for Toffoli Gate

	Solution 12 for Toffoli
	Population Size = 1000
	At Generation Number 65

	Parameter Setting 18 (10010)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 0 (No Threshold)
	Type of Replication: 0 (RW)

	Type of Mutation: 1 (Bitwise)
	Type of GA: 0 (Normal)

	Alpha = 0.99
	Beta = 0.01

	Mutation Probability = 0.3
	Crossover Probability = 0.8

	Circuit Representation: pBBWppIWppJppBBWppBBWppFBppWDppWWBppKp

	Divider: 3
	Fitness: 1.0, Error: 0.0
	Cost:13

Table 22. Solution 13 for Toffoli Gate

	Solution 13 for Toffoli
	Population Size = 1000
	At Generation Number 5

	Parameter Setting 24 (11000)
	Type of Fitness: 1 (Complex)

	Type of Threshold: 1 (Threshold = 0.8)
	Type of Replication: 0 (RW)

	Type of Mutation: 0 (Normal)
	Type of GA: 0 (Normal)

	Alpha = 0.99
	Beta = 0.01

	Mutation Probability = 0.3
	Crossover Probability = 0.8

	Circuit Representation: pJppKppKppJppKppKppGWppGW

ppJppKppKppGWppKppJppGWppGWppGWppJppJppGWppKppFBppJppGWppEBp

	Divider: 3
	Fitness: 1.0, Error: 0.0
	Cost:27

From these results, we conclude that the best value of Mutation Probability is 0.3, and the best value of Crossover Probability is 0.8. Furthermore, higher values of factor Alpha, and larger population size leads us to better performance of exhaustive search of quantum circuit synthesis.
The number attributed to Divider is the estimated minimum cost of the circuit synthesis; however the fact is that for every solution achieved in this project, the value of cost is higher than the estimated minimum cost. Thus, decreasing the value of divider does not mean that we will achieve a solution with very small cost. The search for the optimum solution, thus the solution with minimum number of cost, is a matter of trials and repetitions of exhaustive search.

5.4 Population Size and Computational Time

All the results so far have shown that the fitness value is increased as the population size increases. Thus, in order to improve the efficiency of this search mechanism, we should increase the population size. However, another problem rises from this fact, which is the computational time. The population size is the most critical parameter for the simulation time. For example, with population size 200, it takes 2 hours for a run with 10000 generations, using a powerful quite new PC. If we want to satisfy the requirement of 20 runs at least, it would take too much time for all simulations. Therefore there was the need of reducing the number of runs or generations or population size for observing a kind of tendency. We chosen the population size could be limited, because there are no requirements on the exact number of population size to be used, and results shown in Sub-Section 5.2 make us believe that not a very large number of population sizes are necessary to achieve solutions. The number of runs or generations on the other hand is strictly required, and should not be reduced.

In our simulations, a run with parameters of Group 1 takes approximately 10 minutes, for Group 2 around 20 minutes and for Group 3 around 1 hour. 6 computers were used for simulations, and parallel multiple runs of simulations were performed day and night.
5.5 Use of Different Quantum Gates to Search for Quantum Circuit Synthesis
 We experimentally set up different gates in the output file, which are used in the search for quantum circuit synthesis with Toffoli gate as the desired gate. We tried to use only the first 8 gates of the input file, and repeat the search. No solution was found. We also tried to use the 6 gates of 3 wires in the input file, again with no successful results. We understand that the gates stated in Table 1 are not necessary the best; however they lead to the solutions of quantum circuit synthesis equivalent to Toffoli gate. The influence of using other quantum gates as Hadamard gate, Pauli Z gate, Pauli Y gate , Phase gate, Pi/8 /gate, and others are topics for future studies.
 Also in this project we used the quantum gates listed in Table 1 with the objective of searching for quantum circuit synthesis equivalent to Fredkin Gate and Margolus Gate. However, no solution was found for these cases. The search for quantum circuit synthesis of Fredkin Gate and Margolus Gate requires more types of gates, including the Toffoli Gate in the input. The search for quantum circuit synthesis of Fredkin Gate and Margolus Gate, as well as the analysis of parameters and options remain as topics for further studies.
6. Conclusions

In this project we made a detailed exploration of results obtained using different parameters and setting for a GA, with the objective of finding solutions of quantum circuit synthesis equivalent to Toffoli Gate.
A total of 13 solutions were found for Toffoli Gate, using the basic quantum gates provided in the input file. The best solution has cost 7 and the worst solution has cost 69. The parameter Divider has the function of estimate the minimum cost of the circuit synthesis; however for every solution different values of cost were obtained, and all they are higher than the estimated cost Divider = 6. Thus, the search of an optimal solution is not directly related to the Divider Value, and more strongly related to the parameters of GA.
The Parameter Setting Number 11 (01011) has shown outstanding features with three solutions for all the three groups of parameters, and thus this is the best Parameter Setting Combination, which yields to high probability of finding quantum circuit synthesis solutions. We also conclude that the relatively best type of Mutation is Bitwise, and the best type of Replication is RW. It was not possible to note a relation between the parameters and the values of costs, because the cost is obtained from the combination of quantum gates to form a circuit by the software.

The factors Alpha and Beta of the complex fitness function have influences in the achievement of desired circuits, and suggest us an approach to optimization of quantum circuits. The fitness value is increased as the Alpha value is increased; however the best fitness of all generations is better at less Alpha value, thus there is a two fold (advantage and drawback) characteristic in increasing factor Alpha and decreasing factor Beta. We also conclude that the best value of Mutation Probability is 0.3, and the best value of Crossover Probability is 0.8. Simulations using these parameters lead to solutions as expected.
Larger population size leads to better performance of exhaustive search of quantum circuit synthesis. However there is a drawback that for larger population size, the time if simulation increases exponentially, resulting in the difficult of performing simulation. A balance between population size and number of simulation runs has to be established. As the search for optimum solution is more related to the number of trials (simulation runs) than to population size, we chosen to keep the number of runs and generations of simulations, and limit the population size to practical and realistic orders. The majority of the solutions described in this report were obtained with population sizes of 50, 70 and 100.
Acknowledgements

 The authors of this report would like to thank Professor Marek Pekowski for his interesting and active lectures, and also for his precious advices both academicals and professional. Many thanks also for Ph.D. Martin Lukac for his kind attention and technical support especially during the works on this project.
References

[1] Marek Perkowski, Martin Lukac, et al, “A Hierarchical Approach to Computer-Aided Design of Quantum Circuits”, March 2003.
[2] Martin Lukac, “GSE Documentation and User’s Manual”, 2003.
[3] Marek Perkowski, “Lectures Notes of EE817 Emerging Computing Technologies Coursework”, http://eepia.kaist.ac.kr/~mperkows/quantum.html, spring 2003.
Appendix 1

GSE – Documentation and User’s Manual, By Ph.D. Martin Lukac (2003)
GSE – is a genetic algorithm (GA) developed for the quantum gates and circuits synthesis. It has a certain number of features that are described here. It uses a particular representation of individuals in the population in order to facilitate all genetic operators. Designed such as, it is very helpful tool not only for quantum logic synthesis but also for the understanding of the GA.

Features:

· Operators

· Mutation

· Normal, Bitwise

· Crossover

· Single point, multiple point

· Repair methods

· Preserves the circuits integrity

· Fitness function

· Simple (error)

· Complex (error, cost)

· Shared - grouped

· Selection operators

· RW (Roulette wheel)

· SUS (Stochastic universal sampling)

· Pareto-optimality with Tournament

· Threshold

· Interface

· Console

· Type the command and input the input file then the output file

· All commands are given in the input file (refer to the input file template)

1. Operators

Here is the description of all used operators in this GA. S can be later seen and will be explained the probabilities of these operations are to be set in the input file.

a. Mutation

Operator used to insert noise, bias and to prevent convergence to a local minimum. Generally should be set to a relatively low value [0.01 – 0.3] compared to Crossover [0.3 – 0.7]. Different possible mutation operators are available in the literature and in the public use. Here are described only few of them because I think the way how you add noise in a problem is not extremely important although can have a crucial role.

a) Normal

Normal mutation is considered here the most classical type of mutation. For each individual in the population a random number is generated. If this number is smaller than the Mutation probability then another random number is generated. This last one will serve to determine a position in the circuit where the mutation will be made. The last point of this method is to take the element pointed on and switch its value randomly to some other one. Simple, ain’t it?

b) Bitwise

Similar to the previous type of mutation but for each individual there are n random numbers generated for each element in their representation. Consequently there is a bigger chance of introducing noise by this method.

b. Crossover

Crossover is tone of the vital operations giving the GA such a big use and a high level of success. Crossover is as its name said the recombination of two or more individuals from the population by crossing their respective representations. The configuration now allows to set the crossover parameter to 0 or to 1 (cf. README.txt).

c) Single point

Assume we have two individuals we want to “Crossover”; for each of them generate a random number in the range of the size of their respective representations. Then exchange the parts of their representation after or before this point.

d) Multi point

As with single point crossover but in this case select 2 or more randomly located points in the concerned individuals representation and exchange each even part between the two parents. This method will not be often used in our algorithm becaue of the various lengths of the chromosomes.

e) Multi parent

In the previous methods only 2 parents were always considered. In this type of crossover we assume an arbitrary number of parents is selected for the crossover and then a a multipoint crossover is applied. The parts taken from one of the parents is then randomly selected. (Not yet implemented)

c. Repair method

This method checks for the correctness of the circuit and is not used in the most cases because all operators are mostly precise, but there are basically three modes of repairing a circuit based on the type of error. These are: missing gate, additional gate and ill formed segment. In the lowest version of the repair model if one error is located then the whole segment is removed. Otherwise the method either adds an empty wire until the segment is good again or it removes the additional gate.

2. Fitness function

a. Simple

This fitness function describers simply the error measure for evolved circuits. It is based on the one to one comparisons between the elements of the matrix in the evolved circuit and in the final one. Moreover here the fitness is normalized to the range [0,1] by dividing the resulting error by the total number of elements in the matrix. This fitness function is good for a simple evaluation of error but do not shows different aspects such as distance from the goal, complexity and so on. Current configuration allows the following values of fitness 0, 1, 2 and 3 (cf. README.txt).

b. Complex

This type of function is more complex and represents the integration of the cost function into the fitness value of each circuit. Consequently fitness function has 2 components: error and cost. In order to explore the problem space and the possibilities of different representations for a given circuit both compounds of the fitness can be scaled by two factors α and β both in [0,1] and α + β = 1.

c. Grouped – Shared

The last proposed approach to calculating of the fitness is a “this application specific” function. The goal is to explore the relation between different individual/circuits. For this during evaluation of one individual we add to his representation each other’s individual representation and we calculate the fitness. After adding each individual at once to this string we calculate a shared fitness by dividing the total accumulated fitness by the number of individuals.
3. Selection operators

The actual possible values for replication are 0 or 1 (cf. README.txt).

a. Roulette wheel

The classical and most commonly used method of selection of individuals from the population. The approach is simple; on a scale one represent all individuals and each individual allocates a size of the scale proportional to its fitness. Then by generating a random number in the interval 0 and the sum of all fitness we select an individual pseudo-randomly.

b. Stochastic Universal Sampling

A method aimed toward the elimination of the birth of a super individual that will be selected most of the times to be reproduced. For this All individuals are represented on a scale where each individual has allocated a space proportional to its fitness. Then for selecting n individuals at once n pointers equally spaced are placed over the scale and individuals that had been pointed are selected.

c. Pareto optimality

This method is used for a multi-objective optimization so as to select globally optimal individuals. For this it is assumed each individual has n parameters to be optimized. The selection proceeds by comparing each individual to all others. Each time an individual’s all parameters are superior to another’s one his rank is increased by 1. After this procedure is done all individuals have a rank assignments and the selection is then based on these rank values with a selection method that can be any of the previously one discussed. You will have to set the parameter pareto to 1 in order to enable pareto-optimal GA (cf. README.txt).

d. Threshold

This approach requires the selection of all best individuals (with the fitness above a set up value) for the replication. The goal is to accelerate the selection only of the best individuals. Consequently the next generation will be only offspring of these most fit individuals. If you want to use threshold selection set threshold parameter to 1 (cf. README.txt).

4. Other types of available parameters

Population size is indicated by population parameter and can be now set up to a value up to 2000.

Alpha, Beta, Alpha1 and Beta1 are four parameters concerning respectively Alpha and Beta the fitness tuning and Alpha1 and Beta1 the pareto-selection criterion (cf. README.txt).

The header file StdAfx.h defines all limits you can modify in order to increase the capacity of some arrays or to decrease the memory allocation.

End of Appendix 1.

Appendix 2

[image: image7.wmf]Error

F

+

=

1

1

The search for quantum circuit synthesis is performed by GSE program with random generations of gates combinations, and the resultant circuit is compared with the desired gate by means of fitness and error. These calculations can be made with different functions. For the software used in this project, there are two types of fitness functions. The first and simplest function can be written down as:

Here, F is the fitness and Error is the one-to-one comparison of the matrix of the desired and the resulting circuit. Bellow we present also another function that is formulated in order to improve the convergence based on fact that during the run a simple fitness is almost constant and consequently there is a big danger of finding a local. This function is more complex than the previous one, and for easy recognition, we will call this by the nickname of complex fitness function.
[image: image8.emf]# (__ __ __ __ __)

Types of: Fitness, Threshold, Replication, Mutation, GA

Number of

Parameter Setting

(__ __ __ __ __)

Types of: Fitness, Threshold, Replication, Mutation, GA

Number of

Parameter Setting

Here, Cost is the cost of the circuit according to the rule adding one point for each 2-qbit gate and 0 for each 1-qbit one. The two factors α (Alpha) and β (Beta) are scaling the weight of error and cost evaluation in the whole fitness function. These factors are able to make the fitness function less or more sensitive to both of these components. F is the fitness, α and β are scaling factors for respectively the error and the cost part, and in general the 1/Cost is replaced by an expression similar to Cost = 5/Costthis. The left-hand part of the equation is the error evaluation and Error/Max_error scales the error in the interval [0,1] so that consequently the error is inversely proportional to the fitness. The problem of this fitness function appears when one analyzes closer a single circuit evaluation. This means that according to our method we are creating circuits by assembling parallel blocks each of them containing one or more quantum gates in parallel.

End of Appendix 2.

End of report.

� EMBED Equation.3 ���

� EMBED Equation.3 ���

PAGE
1

[image: image9.wmf]Cost

error

Max

Error

F

1

)

_

1

(

b

a

+

-

=

[image: image10.wmf]Error

F

+

=

1

1

_1115799802.unknown

_1119052448.unknown

