DECOMPOSITION OF RELATIONS:
 A NEW APPROACH TO
 CONSTRUCTIVE INDUCTION IN MACHINE LEARNING AND DATA MINING - AN OVERVIEW

Marek Perkowski

Portland State University

Data Mining Application for Epidemiologists

Control of a robot

FPGA
Machine Learning from Medical databases

VLSI
 Layout

- This is a review paper that presents work done at Portland State University and associated groups in years 1989-2001 in the area of functional decomposition of multivalued functions and relations, as well as some applications of these methods.

Group Members

Current

Students:
Anas Al-Rabadi

Faculty

Marek Perkowski
Alan Mishchenko

Previous Students:

Stanislaw Grygiel, Ph.D., Intel
Craig Files, Ph.D., Ailent,
Paul Burkey, [nte! Rahul Malvi, Synopsys
Michael Burns, VIsi logic,
Timothy Brandis, O C $£$ D Tu Dinh,
Michael Levy, Georgis T'ech

Collaborating

 FacultyBernd Steinbach
Lech Jozwiak
Martin Zwick

$$
\begin{gathered}
\text { Disence oi } \\
\text { logic synthesis } \\
\text { spproach to } \\
\text { learning }
\end{gathered}
$$

Example of Logical Synthesis

Alan

Mark

Mate

Dave

Jim

Nick

Robert

A - size of hair
B - size of nose
C - size of beard
D - color of eyes

Good guys

A - size of hair
B - size of nose
C - size of beard
D - color of eyes

Generalization 1:

Bald guys with beards are good Generallzation 2:

All other guys are no good
A - size of hair
$\begin{array}{llll} & \\ \end{array}$ AB
00

B - size of nose
C - size of beard
D - color of eyes
$A C$

Short Introduction: multiple-valued logic
Signals can have values from some set, for instance $\{0,1,2\}$, or $\{0,1,2,3\}$
$\{0,1\}$ - binary logic (a special case)
$\{0,1,2\}$ - a ternary logic
$\{0,1,2,3\}$ - a quaternary logic, etc

Types of Logical Synthesis

- Sum of Products
- Decision Diagrams
- Functional Decomposition

Sum of Products

AND gates, followed by an OR gate that produces the output. (Also, use Inverters as needed.)

Decision Diagrams

A Decision diagram breaks down a Karnaugh map into set of decision trees.

A decision diagram ends when all of branches have a yes, no, or do not care solution.

This diagram can become quite complex if the data is spread out as in the following example.

Example Karnaugh Map

ABICD	00	01	10	11
00	1	-	1	-
01	-	1	-	1
10	1	-	1	-
11	0	1	-	1

Decision Tree for Example Karnaugh Map

Functional Decomposition

Evaluates the data function and attempts to decompose into simpler functions.

$$
F(X)=H(G(B), A), X=A \cup B
$$

if $\mathbf{A} \cap \mathbf{B}=\varnothing$, it is
if $\mathbf{A} \cap \mathbf{B} \neq \varnothing$, it is non-disjoint decomposition

Pros and cons

In generating the final combinational network, BDD decomposition, based on multiplexers, and SOP decomposition, trade flexibility in circuit topology for time efficiency

Generalized functional decomposition sacrifices speed for a higher likelihood of minimizing the complexity of the final network

Overview of data mining

What is Data Mining?

Databases with millions of records and thousands of fields are now common in business, medicine, engineering, and the sciences.

To extract useful information from such data sets is an important practical problem.

Data Mining is the study of methods to find useful information from the database and use data to make predictions about the people or events the data was developed from.

Some Examples of Data Mining

1) Stock Market Predictions
2) Large companies tracking sales

3) Military and intelligence applications

Data Mining in Epidemiology

Epidemiologists track the spread of infectious disease and try to determines the diseases original source

Often times Epidemiologist only have an initial suspicions about what is causing an illness. They interview people to find out what those people that got sick have in common.

Currently they have to sort through this data by hand to try and determine the initial source of the disease.

A data mining application would speed up this process and allow them to quickly track the source of an infectious diseases

Types of Data Mining

Data Mining applications use, among others, three methods to process data

1) Neural Nets

2) Statistical Analysis

The method we are using

Decomposition of Multi-Valued Relations

$$
F(X)=H(G(B), A), X=A \cup B
$$

if $\mathbf{A} \cap \mathbf{B}=\varnothing$, it is disjoint decomposition if $\mathbf{A} \cap \mathrm{B} \neq \varnothing$, it is non-disjoint decomposition

Forming a CCG from a K-Map

Columns 0 and 1 and columns 0 and 2 are compatible
column compatibility index $=2$

Column

Compatibility
Graph

Forming a CIG from a K-Map
a b \c

	0	1	2
00	-	-	-
01	-	-	-
02	1	0,1	-
10	-	-	2
11	-	1	2
12	-	1	-
20	-	-	-
21	-	-	0
22	-	2,3	-

Columns 1 and 2 are incompatible
chromatic number $=2$

Column
Incompatibility Graph

CCG and CIG are complementary

Maximal clique covering
clique partitioning

Compatibinty
Graph

Graph coloring
C_{1} graph multicoloring

Column
Incompatibility
Graph

clique partitioning example.

Maximal clique covering example.

Map of relation G

From CIG

After induction

$$
\begin{aligned}
& \mathrm{g}=\mathrm{a} \text { high pass filter whose } \\
& \text { acceptance threshold begins at } \\
& \mathrm{c}>1
\end{aligned}
$$

Cost Function

Decomposed Function Cardinality is the total cost of all blocks.

Cost is defined for a single block in terms of the block's n inputs and m outputs

$$
\text { Cost }:=m * 2^{n}
$$

DFC $=$ Decomposed Function Cardinality

$$
C_{x}(f)=\log _{2} \min \{\text { cost of } \Gamma: \Gamma \text { simulates } f\}
$$

$$
\operatorname{cost}(f)=2^{|X|}|Y|
$$

Example of DFC calculation

$\operatorname{Cost}(\mathrm{B} 1)=2^{4 *} 1=16$

$\operatorname{Cost}(\mathrm{B} 3)=2^{2 *} 1=4$

$$
\text { Total } \mathrm{DFC}=16+16+4=36
$$

Other cost functions

New Complexity Measures

$$
C_{x}=\log _{2}\left(\prod_{x_{i} \in X}\left|x_{i}\right| \log _{2} \prod_{y_{j} \in Y}\left|y_{j}\right|\right)
$$

where: $\begin{aligned} & \left|x_{i}\right| \quad \text { is cardinality of variable } x_{i} \in X, \\ & \left|y_{j}\right| \quad \text { is cardinality of variable } y_{j} \in Y .\end{aligned}$

$$
C_{x}=\log _{2}\left(\prod_{y_{j} \in Y}\left|y_{j}\right|\right)^{\Pi_{x_{i} \in X}\left|x_{i}\right|}=\prod_{x_{i} \in X}\left|x_{i}\right| \log _{2} \prod_{y_{j} \in Y}\left|y_{j}\right|
$$

Comparison of RC before and after decomposition

$\mathrm{RC}_{\text {before }}=(3 * 3 * 3) *\left(\log _{2} 4\right)=54$
$\mathrm{RC}_{\text {after }}=\left[(3) *\left(\log _{2} 2\right)\right]+$

$$
\left[(2 * 3 * 3) *\left(\log _{2} 4\right)\right]=3+36=39
$$

Two-Level Curtis Decomposition

$$
F(X)=H(G(B), A), X=A \cup B
$$

B - bound set

if $\mathbf{A} \cap \mathbf{B}=\varnothing$, it is disjoint decomposition
if $\mathbf{A} \cap \mathbf{B} \neq \varnothing$, it is non-disjoint decomposition

Decomposition Algorithm

- Find a set of partitions $\left(\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}\right)$ of input variables (X) into free variables (A) and bound variables (B)
- For each partitioning, find decomposition $\mathrm{F}(\mathrm{X})=\mathrm{H}_{\mathrm{i}}\left(\mathrm{G}_{\mathrm{i}}\left(\mathrm{B}_{\mathrm{i}}\right), \mathrm{A}_{\mathrm{i}}\right)$ such that column multiplicity is minimal, and calculate DFC
- Repeat the process for all partitioning until the decomposition with minimum DFC is found.

Algorithm Requirements

- Since the process is iterative, it is of high importance that minimization of the column multiplicity index is done as fast as possible.
- At the same time, for a given partitioning, it is important that the value of the column multiplicity is as close to the s.bsolute minimum value

Column Multiplicity

Bound Set

Column Multiplicity-other example

AB		${ }_{00} \begin{gathered}\text { Bound Set } \\ 01\end{gathered}$			
	00	0	0	-	1
	01	-	1	0	0
	11	1	-	1	-
\%	10	1	1	0	0
			2	3	4

$\mathrm{X}=\mathrm{G}(\mathrm{C}, \mathrm{D})$
$\mathrm{X}=\mathrm{C}$ in this case

But how to calculate function H ?

Decomposition of multiple-valued relation

Discovering new concepts

- Discovering concepts useful for purehesing ti Cell

Variable ordering

- Uncertainty (Shannon):

$$
u(\alpha)=-\sum_{i} p\left(\alpha=\alpha_{i}\right) \log _{2} p\left(\alpha=\alpha_{i}\right)
$$

- Conditional Uncertainty (Shannon):

$$
u(a \mid b)=u(a b)-u(b)
$$

Vacuous variables removing

Example of removing inessential variables (a) original function (b)
variable a removed (c) variable b removed, variable c is no longer inessential.

Generalivation of
the AshenhurstCurtis decomposition model

Compatibility graph

 construction for data with noise| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ab | 00 | 01 | 11 | 10 |
| ${ }^{\text {a }}$ | 0 | 3^{4} | 1,3 ${ }^{7}$ | 29 |
| 01 | 1 | - | 0,1 ${ }^{\text {8 }}$ | $1{ }^{10}$ |
| 11 | $0{ }^{2}$ | 35 | - | - |
| 10 | $0{ }^{3}$ | $4{ }^{6}$ | - | 4^{11} |

Kmap

Compatibility Graph for Threshold 0.75

Compatibility Graph for Threshold 0.25

Compatibility graph for metric data

$\mathrm{Bl}_{00} \mathrm{Bl}_{01} \mathrm{Bl}_{11} \mathrm{Bl}_{10}$				
$a b>00$				
00	0	3	1,3	
01	1	-	0,1	$1{ }^{10}$
11	0	3	-	-
10	0	4^{6}	-	4^{11}

Kmap

Compatibility Graph for metric data

Difference of 1

MV relations can be created from contingency tables

cd				
00	77	57	3	2
01	1	110	12	1
11	12	28	200	1
10	0	423	21	52

a)

THRESHOLD 70

b		
a 0		
0	00	01
1	01	11

d)

00	1	1	0	0
01	0	1	0	0
11	0	0	1	0
10	0	1	0	1

THRESHOLD 50

cd
e)

Figure 1: Contingency tables

Example of decomposing a Curtis non-decomposable function.

(a)

(c)

(d)

(e)

