DECOMPOSITION OF RELATIONS: A NEW APPROACH TO CONSTRUCTIVE INDUCTION IN MACHINE LEARNING AND DATA MINING - AN OVERVIEW

> Marek Perkowski Portland State University

Data Mining Application for Epidemiologists

Control of a robot

 This is a review paper that presents work done at Portland State **University and associated groups in** years 1989 - 2001 in the area of functional decomposition of multivalued functions and relations, as well as some applications of these methods.

Group Members

Current Students:

Anas Al-Rabadi

Faculty

Marek Perkowski

Alan Mishchenko

Collaborating Faculty Bernd Steinbach Lech Jozwiak

Martin Zwick

Previous Students:

Stanislaw Grygiel, Ph.D., Intel Craig Files, Ph.D., Agilent. Paul Burkey, Intel Rahul Malvi, Synopsys Michael Burns, Vlsi logic, Timothy Brandis, OrCAD Tu Dinh, Michael Levy, Georgia Tech

Example of Logical Synthesis

Generalization 1:

Bald guys with beards are good **Generalization 2**:

All other guys are no good

Short Introduction: multiple-valued logic Signals can have values from some set, for instance {0,1,2}, or {0,1,2,3} {0,1} - binary logic (a special case) {0,1,2} - a ternary logic {0,1,2,3} - a quaternary logic, etc

Types of Logical Synthesis

• Sum of Products

• Decision Diagrams

• Functional Decomposition <

The method we are using

Sum of Products

AND gates, followed by an OR gate that produces the output. (Also, use Inverters as needed.)

Decision Diagrams

A Decision diagram breaks down a Karnaugh map into set of decision trees.

A decision diagram ends when all of branches have a yes, no, or do not care solution.

This diagram can become quite complex if the data is spread out as in the following example.

Example Karnaugh Map

AB\CD	00	01	10	11
00	1	-	1	I
01	-	1	-	1
10	1	-	1	-
11	0	1	-	1

Decision Tree for Example Karnaugh Map

Incompletely specified function

10/7/2002

Completely specified function

10/7/2002

Functional Decomposition

Evaluates the data function and attempts to decompose into simpler functions.

 $F(X) = H(G(B), A), X = A \cup B$

if $A \cap B = \emptyset$, it is disjoint decomposition if $A \cap B \neq \emptyset$, it is non-disjoint decomposition

Pros and cons

In generating the final combinational network, BDD decomposition, based on multiplexers, and SOP decomposition, trade flexibility in circuit topology for time efficiency

Generalized functional decomposition sacrifices speed for a higher likelihood of minimizing the complexity of the final network

What is Data Mining?

Databases with millions of records and thousands of fields are now common in business, medicine, engineering, and the sciences.

To extract useful information from such data sets is an important practical problem.

Data Mining is the study of methods to find useful information from the database and use data to make predictions about the people or events the data was developed from.

Some Examples of Data Mining

1) Stock Market Predictions

2) Large companies tracking sales

3) Military and intelligence applications

Data Mining in Epidemiology

Epidemiologists track the spread of infectious disease and try to determines the diseases original source

Often times Epidemiologist only have an initial suspicions about what is causing an illness. They interview people to find out what those people that got sick have in common.

Currently they have to sort through this data by hand to try and determine the initial source of the disease.

A data mining application would speed up this process and allow them to quickly track the source of an infectious diseases

Types of Data Mining

Data Mining applications use, among others, three methods to process data

1) Neural Nets

2) Statistical Analysis

3) Logical Synthesis

The method we are using

A Standard Map of function 'z' **Bound Set** $\mathbf{a} \mathbf{b} \setminus \mathbf{c}$ $\left(\right)$ 2 1 0 0 -**Columns 0 and 1** 0 1 and 0 2 0,1 columns 0 and 2 10 2 Free Set are compatible 1 1 2 1 2 -20 column 2 1 compatibility = 22 2 2, 3-

Ζ

Decomposition of Multi-Valued Relations

 $F(X) = H(G(B), A), X = A \cup B$

if $A \cap B = \emptyset$, it is disjoint decomposition if $A \cap B \neq \emptyset$, it is non-disjoint decomposition

Forming a CCG from a K-Map

Ζ

Columns 0 and 1 and columns 0 and 2 are compatible column compatibility index = 2

Column Compatibility Graph

Forming a CIG from a K-Map

Columns 1 and 2 are incompatible chromatic number = 2

 \mathbf{C}_2

Column Incompatibility Graph

CCG and CIG are complementary

Maximal clique covering

<section-header><section-header>

Column Incompatibility Graph

clique partitioning example.

Maximal clique covering example.

From CIG

After induction

g = a high pass filter whose acceptance threshold begins at c > 1

Cost Function

Decomposed Function Cardinality is the total cost of all blocks.

Cost is defined for a single block in terms of the block's n inputs and m outputs

Cost := *m* * 2^{*n*}

DFC = Decomposed Function Cardinality

$$C_x(f) = \log_2 \min \{ cost \ of \ \Gamma : \Gamma \ simulates \ f \}$$

$$cost(f) = 2^{|X|}|Y|$$

Example of DFC calculation

Total DFC = 16 + 16 + 4 = 36

Other cost functions

New Complexity Measures

$$C_x = \log_2 \left(\prod_{x_i \in X} |x_i| \, \log_2 \prod_{y_j \in Y} |y_j| \right)$$

where:	$ x_i $	is cardinality of variable $x_i \in X$,
	$ y_j $	is cardinality of variable $y_j \in Y$.

$$C_x = \log_2 \left(\prod_{y_j \in Y} |y_j| \right)^{\prod_{x_i \in X} |x_i|} = \prod_{x_i \in X} |x_i| \log_2 \prod_{y_j \in Y} |y_j|$$

Comparison of RC before and after decomposition

 $RC_{before} = (3*3*3)*(log_24) = 54$ $RC_{after} = [(3)*(log_22)] + [(2*3*3)*(log_24)] = 3 + 36 = 39$

if $A \cap B = \emptyset$, it is disjoint decomposition if $A \cap B \neq \emptyset$, it is non-disjoint decomposition

Decomposition Algorithm

- Find a set of partitions (A_i, B_i) of input variables (X) into free variables (A) and bound variables (B)
- For each partitioning, find decomposition $F(X) = H_i(G_i(B_i), A_i)$ such that column multiplicity is minimal, and calculate DFC
- Repeat the process for all partitioning until the decomposition with minimum DFC is found.

Algorithm Requirements

- Since the process is iterative, it is of high importance that minimization of the <u>column multiplicity index</u> is done as **fast** as possible.
- At the same time, for a given partitioning, it is important that the value of the column multiplicity is as close to the absolute minimum value

Column Multiplicity-other example

X=G(C,D) X=C in this case

But how to calculate function H?

Decomposition of multiple-valued relation

Discovering new concepts

Discovering concepts useful for purchasing a car

Variable ordering

• Uncertainty (Shannon):

$$u(a) = -\sum_{i} p(a = a_i) \log_2 p(a = a_i)$$

• Conditional Uncertainty (Shannon):

u(a|b) = u(ab) - u(b)

Vacuous variables removing

Variables b and d reduce uncertainty of y to 0 which means they provide all the information necessary for determination of the output y

• Variables a and c are vacuous Example of removing inessential variables (a) original function (b) variable a removed (c) variable b removed, variable c is no longer inessential.

Generalization of the Ashenhurst-Curtis decomposition model

Compatibility graph construction for data with noise

Compatibility graph for metric data

Difference of 1

MV relations can be created from contingency tables

Figure 1: Contingency tables

Example of decomposing a Curtis non-decomposable function.

(a)

(d)

(f)