# Introduction of Real-Time Embedded System Design

Gang Quan

Chet Kagel FMTC, Orlando Office

# What are **Embedded** Systems?

system.

• Def. - A microprocessor-based control system which processes a fixed set of programmed instructions to control electromechanical equipment which may be part of an even larger

## **Embedded Systems Defined**

• Refers to either single or multi-purpose computerized devices that are literally embedded within some larger piece of engineering equipment or industrial product.

# **Examples of Embedded Systems**

- Personal Computers (PCs)
- ATMs
- Heating, Cooling and Ventilating Systems
- Security Systems
- Elevators
- Bar Code Equipment
- Real Time Control Systems
- Computer Numeric Controls (CNCs)

- Telephone Exchanges and Switches (PBXs)
- Environmental Monitoring Equipment
- Global Positioning System (GPSs)
- Programmable Logic Controls (PLCs)
- Test Equipment
- Robotics
- Supervisory Control & Data Acquisition
- Systems (SCADAs)

#### Real-Time Embedded System Design

What? Why? How ???

#### What

- What is the real-time embedded system?
  - Embedded System
    - Processor based
      - General processors
      - Micro controllers
      - DSP
    - A subsystem
    - Not a general programming computer
  - Real-Time
    - Not only deliver correct results but when these results are delivered

## Examples In Your Daily Life

• ...wake up ...



• ...have breakfast ...



• ...set home safety system ...



• ...get into your car ...



- A late model car can have as many as 65+ processors for engine control, A/C control, cruise control, ABS, audio, etc
- More than 30% of the cost of a car is now in electronics
- 90% of all innovations will be based on electronic systems

• ...on your way to your office...





• ...in your office ...















• ...back home ...

















Several hundred processors can be involved in the course of one day for one person!

## Other Examples

- Mission critical controls
  - Nuclear plant control, aircraft navigation, military equipment
- Medical equipment
- Communication
- Toy, etc

Real-time embedded systems have been deeply ingrained in our life

## What (cont'd)

• What are in the real-time embedded system?



Auxiliary Systems (power, cooling,...)

#### Example: Digital Camera



#### Why

- Why using the processor(s) in the real-time embedded systems?
  - Flexibility
  - Easy to upgrade
  - Easy to build complex system behavior
  - Maintainability

## Why

- Why is it so hard to design the real-time embedded system?
  - Moore's Law
    - Productivity Gap
  - More complex functionality and extreme diversity
  - Design Cost
  - Stringent Time-to-market
  - Design requirements (constraints)

#### Moore's Law

The transistor density of semiconductor chips would double roughly every 18 months.

--by Gordon Moore,1965 (co-founder of Intel)



#### The Future of Moore's Law

- The deep submicron technology will make most of the current IC technologies obsolete
  - Signal integrity, power consumption, etc
- However ...
  - Intel announced its Terahertz Transistor Architecture will allow the continuation of Moore's Law
    - Push the IC feature size to as small as 15nm
  - Science's Top Ten: nanoscale computing circuits named the top scientific achievement of 2001
    - Each transistor can be as small as one or several molecules

Moore's law will still be true and continue to drive the development of IC technology!!

#### Productivity Gap

The gap between the availability of the IC technology (increasing computing power) and the application of the IC technology.

# Crisis: Productivity Gap



#### Why (cont'd)

- Why is it so hard to design the real-time embedded system?
  - Moore's Law
    - Productivity Gap
  - More complex functionality and extreme diversity
  - Design cost
    - Reduce non-recurring engineering (NRE) cost
    - A superior human engineer may outperform the CAD tools in designing simple embedded systems but not for systems with hundred millions to billions gates
  - Stringent time-to-market
  - Design requirements (constraints)

#### Silicon Technology

|              | 1997                  | 1998             | 1999                | 2002                 |
|--------------|-----------------------|------------------|---------------------|----------------------|
| Technology   | 350nm                 | 250nm            | 180nm               | 130nm                |
| Cost         | \$1.5-2.0billion      | \$2-3billion     | \$3-4billion        | \$4+ billion         |
| Design cycle | 18-12mo               | 12-10mo          | 10-8mo              | 8-6mo                |
| Complexity   | 200-500k              | 1-2M             | 4-6M                | 10-25M               |
| Application  | Cellar phone,<br>DVDs | Wireless<br>PDAs | Internet appliances | Ubiquitous computing |

## Why

- Why is it so hard to design the real-time embedded system?
  - Moore's Law
    - Productivity Gap
  - More complex functionality and extreme diversity
  - Design Cost
  - Stringent Time-to-market
  - Design requirements (constraints)

#### Design Requirements (Constraints)

- Timing
- Size&Weight
- Safety & Reliability
  - Low cost reliability with minimal redundancy
- Cost sensitivity
- Power consumption
- Others: component acquisition, upgrades, compatibility, etc.

#### How

- Not an easy answer, in general:
  - Increase the abstraction level
    - system level design is the key
  - Design reuse

#### What's Next

- Introduction
  - System level design, IP reuse, platform based design, real-time operating system
- Computation modeling
  - DFG, CDFG, FSM, Petri Net, etc
- Optimization Methods
- System Partitioning
- System Scheduling