Register Allocation
(via grapf coloring)

Lecture 25

Lecture Outline

- Memory Hierarcfy Management
- Register Allocation
- Register interference grapf
- Grapf coloring fieuristics
- spilling
- Cacfie Management

The Memory Hierarchy

Managing the Memory Hierarchy

- Programs are written as if there are only two Kinds of memory: main memory and disk
- Programmer is responsible for moving data from disk to memory (egg., file I / O)
- Hardware is responsible for moving data between en memory and cackles
- Compiler is responsible for moving data betwe en memory and registers

Current Trends

- Cache and register sizes are growing slowly
- Processor speed improves faster than memory speed and diskspeed
- The cost of a cache miss is growing
- The widening gap is bridged with more caches
- It is very important to:
- Manage registers properly
- Manage caches properly
- Compilers are good at managing registers

The Register Allocation Problem

- Recall that intermediate code uses as many temporaries as necessary
- This complicates final translation to assembly
- But simplifies code generation and optimization
- Typical intermediate code uses too many temporaries
- The register allocation problem:
- Rewrite the intermediate code to use fewer temporaries than there are machine registers
- Method: assign more temporaries to a register
- But without changing the program behavior
\mathcal{H} istory
- Register allocation is as old as intermediate code
- Register allocation was used in the original $\mathcal{F O R T R A N}$ compiler in the 50 s - Very crude algoritfims
- A breakthrough was not acfieved until 1980 when Chaitin invented a register allocation scheme based on graph coloring
- Relatively simple, global and works well in practice

An Example

- Consider the program

$$
\begin{aligned}
& a:=c+d \\
& e:=a+b \\
& f:=e-1
\end{aligned}
$$

- with the assumption that a and e die after use
- Temporary a can be "reused"aftere $:=a+b$
- Same with temporary e
- Can allocate a, e, and f all to one register $\left(r_{1}\right)$:

$$
\begin{aligned}
r_{1} & :=r_{2}+r_{3} \\
r_{1} & :=r_{1}+r_{4} \\
r_{1} & :=r_{1}-1
\end{aligned}
$$

Basic Register Allocation Idea

- The value in a dead temporary is not needed for the rest of the computation
- A dead temporary can be reused
- Basic rule:
- Temporaries t_{1} and t_{2} canstiare the same register if at any point in the program at most one of t_{1} or t_{2} is live!

Algoritfin: Part I

- Compute live variables for each point:

The Register Interference Graph

- Two temporaries that are live simultaneously cannot be allocated in the same register
- We construct an undirected graph
- A node for each temporary
- Anedge between t_{1} and t_{2} if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
- Two temporaries can be allocated to the same register if there is no edge connecting them

Register Interference Graph. Example.

- For our example:

- E.g., 6 and c cannot be in the same register
- E.g., b and d can be in the same register

Register Interference Graph. Properties.

- It extracts exactly the information needed to characterize legal register assignments
- It gives a global (i.e., over the entire flow graph) picture of the register requirements
- After $\mathcal{R I} \mathcal{G}$ construction the register allocation algorithm is architecture independent

Graph Coloring. Definitions.

- \mathcal{A} coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- Agraph is K-colorable if it has a coloring with K colors

Register $\mathcal{A l l o c a t i o n}$ Through Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let $K=$ number of machine registers
- If the RIG is K-colorable then there is a register assignment that uses no more thank registers

Graph Coloring. Example.

- Consider the example RIG

- There is no coloring with less than 4 colors
- There are 4-colorings of this graph

Graph Coloring. Example.

- Under this coloring the code becomes:

Computing Graph Colorings

- The remaining problem is to compute a coloring for the interference graph
- But:
- This problem is very fard (\mathfrak{N} (p-hard). No efficient algorithms are known.
- A coloring might not exist for a given number or registers
- The solution to (1) is to use heuristics
- We ll consider later the other problem

Grapf Coloring Heuristic

- Observation:
- Pick a node t witffewer trankneighbors in RIG
- Eliminate t and its edges from RIG
- If the resulting graph has ak-coloring then so does the original graph
- Why:
- Let $c_{1, \ldots, c_{n}}$ be the colors assigned to the ne igfrbors of t in the reduced graph
- Since $n<k$ we can pick some color for that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
- Pick a node t withfewerthankneighroors
- Put ton a stack and remove it from the RIG
- Repeat until the graph fins one node
- Then start assigning colors to nodes on the stack (starting with the last node added)
- At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

- Start with the RIG and with $K=4$:

Stack: \{\}

- Remove a and thend

Graph Coloring Example (2)

- Now all nodes fave fewer than 4 neighbors and can be removed: c, b, e, f

Stack: $\{d, a\}$

Graph Coloring Example (2)

- Start assigning colors to: f, e, b, c, d, a

What if the Heuristic $\mathcal{F a i l s}$?

- What if during simplification we get to a state where all nodes have Kor more neighbors?
- Example: try to find a 3-coloring of the RIG:

What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
- \mathfrak{A} spilled temporary "lives" in memory
- Assume that f is picked as a candidate

What if the \mathcal{H} uristic Fails?

- Remove f and continue the simplification
- Simplification now succeeds: $\sqrt{ }, d, e, c$

What if the Heuristic Fails?

- On the assignment phase we get to the point when we have to assign a color to f
- We hope that among the 4 neighbors of f we use less than 3 colors \Rightarrow optimistic coloring

Spilling

- Since optimistic coloring failed we must spill temporary f
- We must allocate a memory location as the home of f
- Typically this is in the current stackframe
- Call this address fa
- Before each operation that uses f, insert

$$
f:=\text { load } f a
$$

- After each operation that defines f, insert store $f, f a$

Spilling. Example.

- This is the new code after spilling f

Recomputing Liveness Information

- The new live ness information after spilling:

Recomputing Liveness Information

- The new liveness information is almost as before
- f is live only
- Between a $f:=$ load fa and the next instruction
- Between a store f, fa and the preceding instr.
- Spilling reduces the live range of f
- And thus reduces its interferences
- Which result in fewer neighbors in RIG for f

Recompute RIG After Spilling

- The only changes are in removing some of the edges of the spilled node
- In our case f still interferes only with c and d
- And the resulting RIG is 3-colorable

Spilling (Cont.)

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- Possible feuristics:
- Spill temporaries witf most conflicts
- Spill temporaries with fewdefinitions and uses
- Avoid spilling in inner loops
- Any fieuristic is correct

Cackes

- Compilers are very good at managing registers
- Mucfibetter than a programmer could be
- Compilers are not good at managing caches
- This problem is stillleft to programmers
- It is still an openquestion whether a compiler can do anytfing general to improve performance
- Compilers can, and a fewdo, perform some simple cache optimization

Cache Optimization

- Consider the loop

$$
\begin{gathered}
\operatorname{for}(j:=1 ; j<10 ; j++) \\
\text { for }(i=1 ; i<1000 ; i++) \\
a[i]^{*}=6[i]
\end{gathered}
$$

- This program hiss a terrible cache performance
- Why?

Cache Optimization (Cont.)

- Consider the program:

$$
\begin{aligned}
& \text { for }(i=1 ; i<1000 ; i++) \\
& \qquad \begin{array}{c}
\text { for }(j:=1 ; j<10 ; j++) \\
a[i]^{*}=6[i]
\end{array}
\end{aligned}
$$

- Computes the same thing
- But with mucfibetter cache befiavior
- Might actually be more than $10 x$ faster
- A compiler can perform this optimization
- called loop interchange

Conclusions

- Register allocation is a "must fave" optimization in most compilers:
- Because intermediate code uses too many temporaries
- Because it makes a big difference in performance
- Graph coloring is a powerful register allocation schemes
- Register allocation is more complicated for CIS C machine s

