Lattice

diagrams and regular layouts

As we remember, BDDs are easily mapped to circuits

Let us illustrate BDDs with the help of the examples.
Note that BDD nodes are in one to one correspondece with the gate of the MUX circuit.

EXAMPLE

Represent following function as a BDD and ROBDD and represents multiplexor circuit for the function.

$\mathrm{F}=\mathrm{abd}+\mathrm{ab}^{\prime} \mathrm{d}+\mathrm{a}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{c}^{\prime} \mathrm{d}$

ROBDD

MULTIPLEXOR CIRCUIT

Are there other diagrams like this?

- We want to minimize the area
- Maximize the speed
- Improve the testability
- Allow for easy synthesis and direct link to layout

LATTICE DIAGRAMS

-These diagrams are created for both symmetric (no variable repetition) and nonsymmetric functions.
-Non-symmetric functions require in general variable repetition in levels.

Types of dimgrams

s

BDD

Shannon
Lattice
Functional
Decision

Diagram | Positive |
| :--- |
| Davio |
| Lattice |

Negative

Functional
Decision
Diagram
Negative
Davio
Lattice
Kronecker
Functional
Decision Diagram

Kronecker Davio Lattice

Shannon Lattice

Figure 2: Method for creation of a Single-Output Shannon Lattice for a completely specified function represented by $O N$ cubes, (b) the circuit corresponding to a) before the propagation of constants.

Creating Shannon Lattices by cofactoring and joining (Cont)

Figure 3: The method to create the Multi-Output Ordered Shannon Lattice Diagram for an incompletely specified function of three outputs, (a) the method to create the expansions and joining cofactors, (b) the Multi-Output Ordered Shannon Lattice Diagram derived using method from (a), (c) the Folded Shannon Lattice Diagram obtained after logic/layout simplification of the Ondered Shannon Lattice Diagram from bl.

Kroneckers Lattices and their joining rules

(a)
(b)

Figure 1: (a) Array to explain Lattice concepts. (b) - (f) Joining Rules to create Kronecker Lattice Diagrams and related diagrams. Left side - before joining non-isomorphic nodes, right side - after joining nodes and possibly, propagating correction to the right predecessor of nodes. Corrections are propagated only in rules (c), (d), and (ϵ).

EXAMPLE OF Positive Davio Lattice

EXAMPLE OF Positive Davio Lattice(cont)

Final Positive Davio Lattice

And its circuit from Positive Davio gates

Example of Positive Davio Lattice

Figure 4: The method to create Functional Lattive Diagram. Positive Davio expansions are used and ($p D, p D$) joinings are applied to the function represented in $R M$ form.

Free lattice diagrams

Figure 5: Area comparison of folded and ordered Lattices for the same function: (a) new approach of Folded Lattice Diagram with every input avaidable at every node (more complex routing), (b) PSBDD and Ordered Lattice realization with the same variables in diagonal buses.

Experimental designs

- How many times variables must be repeated for practical circuits?

2-3 times repetition is enough

	Fumatican		Heuristiva		Heuriativa II		Hewrictiag III			frgma [a]		
Name	$\begin{gathered} \text { \# gif } \\ \text { LnpuL: } \end{gathered}$	$\begin{gathered} \text { \#gf } \\ \text { sgP Producta } \end{gathered}$	茾 gif Levela	\# gif Nocles	\# Lerele	\# Nockes	\# GI Lemrela	\# gf Noclea	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$	Bect \# of Ngdes	\# af Lerela	\# af Lagpe
$\begin{aligned} & 5 x 10 . \mathrm{E}^{4} \\ & 5 \times 7 . \mathrm{csp}^{4} \end{aligned}$	$\begin{gathered} 7 \\ 7(3) \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 . \overline{8} \\ & 0.8 \end{aligned}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	2
$\begin{aligned} & \text { bwol.esp }{ }^{4} \\ & \text { bw3.esp } \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \underline{g} \\ & 7 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{gathered} 13 \\ 9 \\ \hline \end{gathered}$	$\begin{aligned} & 0.3 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { ma } \\ & \text { ma } \end{aligned}$	$\begin{aligned} & \text { ma } \\ & \text { ma } \end{aligned}$	$\begin{aligned} & \text { ma } \\ & \text { ma } \end{aligned}$
$\begin{gathered} \operatorname{con} 1 . \mathrm{ti}^{\phi} \\ \operatorname{con} 12 . \cos ^{\phi} \end{gathered}$	$\begin{gathered} 7 \\ 7(5) \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ \underline{g} \end{gathered}$	$\begin{aligned} & 1.5 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
Exc2.ti ${ }^{+}$	7	1.4	7	7	7	10	7	$\underline{8}$	0.9	$\underline{8}$	6	1
	$\begin{gathered} 4 \\ 8(5) \end{gathered}$	$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{gathered} 4 \\ 13 \end{gathered}$	$\begin{gathered} 5 \\ 33 \end{gathered}$	$\begin{aligned} & 4 \\ & \underline{y} \end{aligned}$	$\begin{array}{r} 5 \\ 21 \end{array}$	$\begin{aligned} & 4 \\ & \underline{y} \end{aligned}$	$\begin{gathered} 5 \\ 21 \end{gathered}$	$\begin{aligned} & 0.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { mai } \\ & \text { mac } \end{aligned}$	$\begin{aligned} & \text { mai } \\ & \text { mai } \end{aligned}$	$\begin{aligned} & \text { ma } \\ & \text { mal } \end{aligned}$
ma.jority.esp ${ }^{4}$	5	5	5	7	5	10	5	9	0.7	$\underline{\square}$	5	1
mises 50.esp ${ }^{+}$	6	6	9	21	13	43	13	43	0.9	27	1.1	2
miкes 53, csp ${ }^{*}$	6	6	1.1	22	\%	1.5	g	1.4	0.7	23	1.1	2
mainex60.esp ${ }^{*}$	12	2	12	13	12	13	12	13	0.9	1.4	12	1
mainex6l.esp ${ }^{*}$	12	2	12	1.5	12	23	12	1.5	0.9	21	12	1
mainex 6ratep ${ }^{+}$	10	4	X		19	50	19	45	0.7	33	13	2
	$\begin{aligned} & 7[5] \\ & 7[3] \end{aligned}$	$\begin{gathered} 12 \\ 4 \end{gathered}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{gathered} 21 \\ 6 \end{gathered}$	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{gathered} 21 \\ 6 \end{gathered}$	7 3	$\begin{gathered} 21 \\ 6 \end{gathered}$	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{gathered} \text { na } \\ 6 \end{gathered}$	$\begin{gathered} \text { na } \\ 3 \end{gathered}$	ma 1

Table 1: Results for the version of the program with: (1) One Polarity, (2) Look Ahead. X means the process cannot stop. Heuristics I, I and $I I$ will be described in detail in a forthcoming paper. Last three columns has the results from. [4] for comparison.

To read more....

LATTICE DIAGRAMS USING REED-MULLER LOGIC

Marek A. Perkowski, Malgorzata Chrzanowska-Jeske, and Yang Xu,
Department of Electrical Engineering
Portland State University
Portland, OR 97207

Abstract

Universal Akers Arrays (UAA) allow to realize arbitrary Boolean function directly in cellular layout but are very area-inefficient. This paper presents an extension of UAAs, called "Lattice Diagrams" in which Shannon, Positive and Negative Davio expansions are used in nodes. An efficient method of mappig arbitrary multi-output incompletely specified functions to them is presented. We prove that with these extensions, our concept of regular layout becomes not only feasible but also efficient. Regular layout is a fundamental concept in VLSI design which can have applications to submicron design and designing new fine-grain FPGAs.

Homework

- For a simple 4-bit adder, design the following diagrams, and next their corresponding circuits:
- KFDD, Kronecker Lattice
- Positive Davio Lattice

