Khan, et al.
Quaternary Quantum Logic Synthesis

GF(4) Based Synthesis of Quaternary Reversible/Quantum Logic Circuits

Mozammel H. A. Khan1 and Marek A. Perkowski2

1Department of Computer Science and Engineering, East West University
43 Mohakhali, Dhaka 1212, BANGLADESH,
Email: mhakhan@ewubd.edu, mhakhan59@yahoo.com
2Department of Electrical and Computer Engineering, Portland State University
1900 SW 4th Avenue, Portland, OR 97201, USA,
Email: mperkows@ee.pdx.edu
Galois field sum of products (GFSOP) has been found to be very promising for reversible/quantum implementation of multiple-valued logic. In this paper, we show nine quaternary Galois field expansions, using which quaternary Galois field decision diagrams (QGFDD) can be constructed. Flattening of the QGFDD generates quaternary GFSOP (QGFSOP). These QGFSOP can be implemented as cascade of quaternary 1-qudit gates and multi-qudit Feynman and Toffoli gates. We also show the realization of quaternary Feynman and Toffoli gates using liquid ion-trap realizable 1-qudit gates and 2-qudit Muthukrishnan-Stroud gates. Besides the quaternary functions, this approach can also be used for synthesis of encoded binary functions by grouping 2-bits together into quaternary value. For this purpose, we show binary-to-quaternary encoder and quaternary-to-binary decoder circuits using quaternary 1-qudit gates and 2-qudit Muthukrishnan-Stroud gates.

Keywords: encoded binary logic, multiple-valued logic, quaternary logic, quaternary Galois field sum of products, quaternary Galois field decision diagram, quantum logic, reversible logic
1 Introduction
Multiple-valued quantum logic synthesis, specially, ternary logic synthesis

has become popular in the recent years [1-7]. Among them [3, 5, 6] used cascades of ternary reversible gates like Feynman and Toffoli gates

to realize ternary logic functions. The advantage of this approach is that ternary logic functions having many input variables can be easily expressed as ternary Galois field sum of products (TGFSOP) expression and can be realized using cascade of ternary Feynman and Toffoli gates [3, 5, 6].
Though a considerable number of good works have been done on reversible/quantum ternary logic synthesis, it has the limitation that conventional binary logic functions cannot be very easily represented using the ternary base and the developed methods are applicable only for logic functions expressed in ternary base. A very promising alternative may be quaternary logic, using which, besides quaternary logic functions, binary logic functions can be expressed by grouping 2-bits together into quaternary values. For a Hilbert space of N dimension, a binary quantum system requires
[image: image1.wmf]N

n

2

2

log

=

 qubits (quantum bits), whereas a quaternary quantum system requires
[image: image2.wmf]2

log

4

log

log

log

2

2

2

4

4

N

N

N

n

=

=

=

 qudits (quantum digits). Therefore, we have

[image: image3.wmf]2

1

log

2

log

2

2

2

4

=

=

N

N

n

n

 (1)

From (1), we find that 2-bit encoded quaternary realization of binary logic functions requires 1/2 times qudits than the qubits needed for the binary realization. Assuming qubit implementation and qudit implementation are of the same technological complexity, 2-bit encoded quaternary realization of binary function is efficient than the binary realization. However, for this purpose, circuits for input encoding and output decoding will be needed and we show such encoder and decoder circuits in Section 11.

From the experience of ternary logic, it can be expected that quaternary logic functions having many input variables can also be easily expressed as quaternary Galois field sum of products (QGFSOP) expression and can be realized using cascade of quaternary Feynman and Toffoli gates. But the question arises whether quaternary Feynman and Toffoli gates are physically realizable or not. Muthukrishnan and Stroud [8] proposed a family of 2-qudit multiple-valued (d (2) quantum gates, which is theoretically realizable in liquid ion-trap technology. The macro-level quaternary Feynman and Toffoli gates can be realized on the top of Muthukrishnan-Stroud gates as discussed in Sections 8 and 9.

The advantages of quaternary logic and physical realizability of quaternary Feynman and Toffoli gates require that methods should be developed for synthesizing quaternary logic functions as a cascade of quaternary Feynman and Toffoli gates. However, as far as we know, no work has yet been done on expressing quaternary logic function as QGFSOP expression and realizing the QGFSOP expression as a cascade of quaternary Feynman and Toffoli gates. Realization of QGFSOP expression as a cascade of quaternary Feynman and Toffoli gates is discussed in Section 10. But the main difficulty arises with expressing quaternary logic function as QGFSOP expression. The standard technique used in binary and ternary cases is that a set of expansions is used to construct optimum decision diagram (DD) and the DD is flattened to determine the minimized GFSOP expression. In the QGF case the same technique will be useful. But, as far as we know, no such quaternary Galois field expansion (QGFE) and algorithm for constructing optimum quaternary Galois field decision diagram (QGFDD) have yet been reported in the literature.

In this paper, we have developed nine QGFEs using which we can construct optimum QGFDD. However, constructing optimum QGFDD requires efficient algorithm for selecting QGFE for each variable and algorithm for variable ordering. In this paper we concentrated only on developing QGFEs and showing their usefulness. Development of the above mentioned algorithms will be the focus of future research. By flattening the optimum QGFDD we can generate minimized QGFSOP expression. This QGFSOP expression can be realized as cascade of quaternary 1-qudit gates and multi-qudit Feynman and Toffoli gates.

2 Galois field

A field is a set F with two binary operations - addition (denoted by +) and multiplication (denoted by (or absence of any operator) are defined, which satisfies the following axioms:

(A1)
a + (b + c) = (a + b) + c
(associative law for addition)

(A2)
a + b = b + a

(commutative law for addition)

(A3)
There is an element 0 (zero) such that a + 0 = a for all a
(A4)

For any a, there is an element ((a) such that a + ((a) = 0

(M1)
a ((b (c) = (a (b) (c
(associative law for multiplication)

(M2)
a (b = b (a

(commutative law for multiplication)

(M3)
There is an element 1 (not equal to 0) such that a (1 = a for all a
(M4)

For any a (0, there is an element a(1 such that a (a(1 = 1

(D)
 a ((b + c) = (a (b) + (a (c) (distributive law)
If p is a prime number, then the integers mod p form a Galois field (also known as finite field): its elements are the congruence classes of integers mod p, with addition and multiplication induced from integer mod operations.

We can construct a Galois filed with
[image: image4.wmf]r

p

q

=

 elements [abbreviated as GF(q) or GF(
[image: image5.wmf]r

p

)], where p is a prime. The construction of the field is as follows. First, let
[image: image6.wmf]p

F

 be the field of integers mod p. Now choose an irreducible polynomial f(X) of degree r over
[image: image7.wmf]p

F

 as below:

[image: image8.wmf]0

1

1

1

)

(

C

X

C

X

C

X

X

f

r

r

r

+

+

+

+

=

-

-

L

 (2)

Now, the elements of
[image: image9.wmf]q

F

 are all the expressions of the form

[image: image10.wmf]1

1

2

2

1

0

-

-

+

+

+

+

r

r

a

x

a

x

a

x

x

L

 (3)

where a is required to satisfy f(a) = 0, and
[image: image11.wmf]p

r

F

x

x

Î

-

1

0

,

,

L

. The number of expressions of the form of (3) is
[image: image12.wmf]r

p

, since there are p choices for each of the r coefficients
[image: image13.wmf]1

0

,

,

-

r

x

x

L

. Adding these expressions is straightforward. To multiply, we have to consider that

[image: image14.wmf]0

0

1

1

1

=

+

+

+

+

-

-

C

a

C

a

C

a

r

r

r

L

 (4)

For GF(4),
[image: image15.wmf]2

2

=

q

, where p = 2 and r = 2. Then (2) reduces to

[image: image16.wmf]0

1

2

)

(

C

X

C

X

X

f

+

+

=

 (5)

Equation (5) remains irreducible if we take
[image: image17.wmf]1

0

1

=

=

C

C

 and the equation reduces to

[image: image18.wmf]1

)

(

2

+

+

=

X

X

X

f

 (6)

Also equation (3) reduces to

[image: image19.wmf]a

x

x

1

0

+

 (7)

where,
[image: image20.wmf]}

1

,

0

{

,

1

0

Î

x

x

. Now, putting different values of
[image: image21.wmf]0

x

 and
[image: image22.wmf]1

x

 in (7), we can find the four elements of
[image: image23.wmf]4

F

 as follows:

[image: image24.wmf]0

0

0

=

×

+

a

[image: image25.wmf]a

a

=

×

+

1

0

[image: image26.wmf]1

0

1

=

×

+

a

[image: image27.wmf]a

a

+

=

×

+

1

1

1

That means,
[image: image28.wmf]}

1

,

,

1

,

0

{

4

+

=

a

a

F

.
The additions of these elements are mod 2 additions as follows:

[image: image29.wmf]0

0

0

=

+

[image: image30.wmf]1

1

0

=

+

[image: image31.wmf]a

a

=

+

0

[image: image32.wmf]a

a

+

=

+

+

1

)

1

(

0

[image: image33.wmf]1

0

1

=

+

[image: image34.wmf]0

1

1

=

+

[image: image35.wmf]a

a

+

=

+

1

1

[image: image36.wmf]a

a

=

+

+

)

1

(

1

[image: image37.wmf]a

a

=

+

0

[image: image38.wmf]a

a

+

=

+

1

1

[image: image39.wmf]0

=

+

a

a

[image: image40.wmf]1

)

1

(

=

+

+

a

a

[image: image41.wmf]a

a

+

=

+

+

1

0

)

1

(

[image: image42.wmf]a

a

=

+

+

1

)

1

(

[image: image43.wmf]1

)

1

(

=

+

+

a

a

[image: image44.wmf]0

)

1

(

)

1

(

=

+

+

+

a

a

For GF(4), equation (4) reduces to

[image: image45.wmf]0

0

1

2

=

+

+

C

a

C

a

 (8)

Taking
[image: image46.wmf]1

0

1

=

=

C

C

, equation (8) reduces to

[image: image47.wmf]0

1

2

=

+

+

a

a

 (9)

From (9), we have using mod 2 addition

[image: image48.wmf]a

a

+

=

1

2

(10)

The multiplications of the elements are as follows:

[image: image49.wmf]0

0

0

=

×

[image: image50.wmf]0

1

0

=

×

[image: image51.wmf]0

0

=

×

a

[image: image52.wmf]0

)

1

(

0

=

+

×

a

[image: image53.wmf]0

0

1

=

×

[image: image54.wmf]1

1

1

=

×

[image: image55.wmf]a

a

=

×

1

TABLE 1

GF(4) operations.
	+
	0
	1
	2
	3
	
	(
	0
	1
	2
	3

	0
	0
	1
	2
	3
	
	0
	0
	0
	0
	0

	1
	1
	0
	3
	2
	
	1
	0
	1
	2
	3

	2
	2
	3
	0
	1
	
	2
	0
	2
	3
	1

	3
	3
	2
	1
	0
	
	3
	0
	3
	1
	2

[image: image56.wmf]a

a

+

=

+

×

1

)

1

(

1

[image: image57.wmf]0

0

=

×

a

[image: image58.wmf]a

a

=

×

1

[image: image59.wmf]a

a

a

a

+

=

=

×

1

2

[image: image60.wmf]1

1

)

1

(

2

=

+

+

=

+

=

+

×

a

a

a

a

a

a

[image: image61.wmf]0

0

)

1

(

=

×

+

a

[image: image62.wmf]a

a

+

=

×

+

1

1

)

1

(

[image: image63.wmf]1

)

1

(

2

=

+

=

×

+

a

a

a

a

[image: image64.wmf]a

a

a

a

a

a

a

=

+

+

+

=

+

+

=

+

×

+

1

2

1

2

1

)

1

(

)

1

(

2

Now, taking a = 2,
[image: image65.wmf]}

3

,

2

,

1

,

0

{

4

=

F

 and the addition and multiplication over GF(4) are as shown in Table 1.
GF(4) is also known as quaternary Galois field (QGF).
3 Quaternary Galois field sum of products
 expression

In quaternary quantum logic system the unit of memory (information) is a qudit (quantum digit). Logic values of 0, 1, 2, and 3 are represented by a set of distinguishable different states of an object that represent the qudit. Quantum gates carry around and manipulate the quantum information. Any transformation of the qudit state represented by a
[image: image66.wmf]n

n

4

4

´

unitary matrix specifies a valid n-qudit quantum gate. There are many such non-trivial n-qudit gates. In this paper, we consider only the permutation quantum gates, where the characteristic unitary matrix of the gate has only one 1 in each row and column and the other elements of the matrix are 0. The advantages of permutation quantum gates are that they are reversible gates and their outputs can be described using both truth table and Galois field expression.

There are 4! = 24 possible permutations of 0, 1, 2, and 3. Therefore, there are 24 possible reversible truth tables and corresponding permutation unitary matrices for 1-qudit transformations resulting into 24 possible 1-qudit permutation/reversible gates. We represent these 1-qudit
[image: image67]transformations by 24 basic quaternary reversible-literals as shown in Table 2. As it is very difficult to adopt 24 different symbols for the literals, we represent a literal by the QGF expression representing the literal. A basic quaternary reversible-literal multiplied by the constant 2 or 3 produces another basic quaternary reversible-literal as shown in Tables 3 and 4.

Product of two or more basic quaternary reversible-literals is called a QGF product (QGFP). For example, (2x+2)(3x2+2)(2x2) is a QGFP. Sum of two or more QGFP is called a QGFSOP expression. For example, (2x+2)(3x2+2) + (3x+1)(2x) + x is a QGFSOP expression.

TABLE 3
Product of basic quaternary reversible-literal and the constant 2.
	literal
	x
	x+1
	x+2
	x+3

	2(literal)
	2x
	2x+2
	2x+3
	2x+1

	literal
	2x
	2x+1
	2x+2
	2x+3

	2(literal)
	3x
	3x+2
	3x+3
	3x+1

	literal
	3x
	3x+1
	3x+2
	3x+3

	2(literal)
	x
	x+2
	x+3
	x+1

	literal
	x2
	x2+1
	x2+2
	x2+3

	2(literal)
	2x2
	2x2+2
	2x2+3
	2x2+1

	literal
	2x2
	2x2+1
	2x2+2
	2x2+3

	2(literal)
	3x2
	3x2+2
	3x2+3
	3x2+1

	literal
	3x2
	3x2+1
	3x2+2
	3x2+3

	2(literal)
	x2
	x2+2
	x2+3
	x2+1

TABLE 4
Product of basic quaternary reversible-literal and the constant 3.
	literal
	x
	x+1
	x+2
	x+3

	3(literal)
	3x
	3x+3
	3x+1
	3x+2

	literal
	2x
	2x+1
	2x+2
	2x+3

	3(literal)
	x
	x+3
	x+1
	x+2

	literal
	3x
	3x+1
	3x+2
	3x+3

	3(literal)
	2x
	2x+3
	2x+1
	2x+2

	literal
	x2
	x2+1
	x2+2
	x2+3

	3(literal)
	3x2
	3x2+3
	3x2+1
	3x2+2

	literal
	2x2
	2x2+1
	2x2+2
	2x2+3

	3(literal)
	x2
	x2+3
	x2+1
	x2+2

	literal
	3x2
	3x2+1
	3x2+2
	3x2+3

	3(literal)
	2x2
	2x2+3
	2x2+1
	2x2+2

4 Quaternary Galois field expansions
In binary logic, a sum of product expression can be expanded using Shannon expansion for constructing binary decision diagram. An EXOR-sum of products expression can be expanded using Shannon, positive Davio, and negative Davio expansions for constructing Kronecker functional decision diagram. In a similar line of thinking, we develop quaternary Galois field expansions (QGFE), so that we can expand a QGFSOP expression and construct the corresponding quaternary Galois field decision diagram (QGFDD).

1-reduced Post literal (1-RPL) is defined as follows:

[image: image68.wmf]î

í

ì

=

=

otherwise

0

if

1

i

x

x

i

Quaternary 1-RPLs are shown below:

[image: image69.wmf]1

3

0

+

=

x

x

 (11)

[image: image70.wmf]x

x

x

x

+

+

=

2

3

1

 (12)

[image: image71.wmf]x

x

x

x

3

2

2

3

2

+

+

=

 (13)

[image: image72.wmf]x

x

x

x

2

3

2

3

3

+

+

=

 (14)
The cofactors of a quaternary function
[image: image73.wmf])

,

,

,

,

,

(

2

1

n

i

x

x

x

x

f

L

L

 with respect to the variable
[image: image74.wmf]i

x

 are defined as follows:

[image: image75.wmf])

,

,

0

,

,

,

(

2

1

0

n

x

x

x

f

f

L

L

=

[image: image76.wmf])

,

,

1

,

,

,

(

2

1

1

n

x

x

x

f

f

L

L

=

[image: image77.wmf])

,

,

2

,

,

,

(

2

1

2

n

x

x

x

f

f

L

L

=

[image: image78.wmf])

,

,

3

,

,

,

(

2

1

3

n

x

x

x

f

f

L

L

=

We will use sum of two or more cofactors (with or without multiplying by quaternary constant) and they will be called composite cofactors and designated as follows:

[image: image79.wmf]1

0

01

f

f

f

+

=

[image: image80.wmf]2

0

02

f

f

f

+

=

[image: image81.wmf]3

0

03

f

f

f

+

=

[image: image82.wmf]2

1

12

f

f

f

+

=

[image: image83.wmf]3

1

13

f

f

f

+

=

[image: image84.wmf]3

2

23

f

f

f

+

=

[image: image85.wmf]2

1

0

012

f

f

f

f

+

+

=

[image: image86.wmf]3

1

0

013

f

f

f

f

+

+

=

[image: image87.wmf]3

2

0

023

f

f

f

f

+

+

=

[image: image88.wmf]3

2

1

123

f

f

f

f

+

+

=

[image: image89.wmf]3

2

1

0

0123

f

f

f

f

f

+

+

+

=

[image: image90.wmf]3

2

1

)

3

3

)(

2

2

(

1

3

2

f

f

f

f

+

+

=

×

×

[image: image91.wmf]3

2

1

)

3

2

)(

2

3

(

1

2

3

f

f

f

f

+

+

=

×

×

Theorem 1 Any quaternary function
[image: image92.wmf])

,

,

,

,

,

(

2

1

n

i

x

x

x

x

f

L

L

 can be expanded with respect to the variable
[image: image93.wmf]i

x

using the following expansion:

[image: image94.wmf]3

3

2

2

1

1

0

0

2

1

)

,

,

,

,

,

(

f

x

f

x

f

x

f

x

x

x

x

x

f

i

i

i

i

n

i

+

+

+

=

L

L

(15)
Proof: If
[image: image95.wmf]0

=

i

x

, then (15) reduces to

[image: image96.wmf]0

3

2

1

0

1

0

0

0

1

)

,

,

0

,

,

(

f

f

f

f

f

x

x

f

n

=

×

+

×

+

×

+

×

=

L

L

.
If
[image: image97.wmf]1

=

i

x

, then (15) reduces to

[image: image98.wmf]1

3

2

1

0

1

0

0

1

0

)

,

,

1

,

,

(

f

f

f

f

f

x

x

f

n

=

×

+

×

+

×

+

×

=

L

L

.
If
[image: image99.wmf]2

=

i

x

, then (15) reduces to

[image: image100.wmf]2

3

2

1

0

1

0

1

0

0

)

,

,

2

,

,

(

f

f

f

f

f

x

x

f

n

=

×

+

×

+

×

+

×

=

L

L

.
If
[image: image101.wmf]3

=

i

x

, then (15) reduces to

[image: image102.wmf]3

3

2

1

0

1

1

0

0

0

)

,

,

3

,

,

(

f

f

f

f

f

x

x

f

n

=

×

+

×

+

×

+

×

=

L

L

.
Therefore, we have theorem 1.

 (
Theorem 2 Any quaternary function
[image: image103.wmf]f

 can be expanded with respect to the variable
[image: image104.wmf]x

 using any of the following nine quaternary Galois field expansions (QGFE):

QGFE 1:

[image: image105.wmf]03

02

01

0

)

2

)(

1

(

)

3

)(

1

(

)

3

)(

2

(

f

x

x

x

f

x

x

x

f

x

x

x

f

f

+

+

+

+

+

+

+

+

+

=

QGFE 2:

[image: image106.wmf]13

12

01

1

)

2

)(

1

(

)

3

)(

1

(

)

3

)(

2

)(

1

(

f

x

x

x

f

x

x

x

f

x

x

x

f

f

+

+

+

+

+

+

+

+

+

+

=

QGFE 3:

[image: image107.wmf]23

12

02

2

)

2

)(

1

(

)

3

)(

2

(

)

3

)(

2

)(

1

(

f

x

x

x

f

x

x

x

f

x

x

x

f

f

+

+

+

+

+

+

+

+

+

+

=

QGFE 4:

[image: image108.wmf]23

13

03

3

)

3

)(

1

(

)

3

)(

2

(

)

3

)(

2

)(

1

(

f

x

x

x

f

x

x

x

f

x

x

x

f

f

+

+

+

+

+

+

+

+

+

+

=

QGFE 5:

[image: image109.wmf]23

2

13

2

03

2

012

)

2

)(

3

(

)

1

)(

1

(

f

x

x

f

x

x

xf

x

f

f

+

+

+

+

+

+

+

=

[image: image110.wmf]23

2

13

2

03

2

012

)

1

3

)(

1

2

(

)

3

3

)(

2

2

(

3

2

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

[image: image111.wmf]23

2

13

2

03

2

012

)

3

2

)(

2

3

(

)

2

2

)(

3

3

(

2

3

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

QGFE 6:

[image: image112.wmf]23

2

12

2

02

2

013

)

3

)(

2

(

)

1

)(

1

(

f

x

x

f

x

x

xf

x

f

f

+

+

+

+

+

+

+

=

[image: image113.wmf]23

2

12

2

02

2

013

)

2

3

)(

3

2

(

)

3

3

)(

2

2

(

3

2

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

[image: image114.wmf]23

2

12

2

02

2

013

)

1

2

)(

1

3

(

)

2

2

)(

3

3

(

2

3

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

QGFE 7:

[image: image115.wmf]13

2

12

2

01

2

023

)

3

)(

2

(

)

2

)(

3

(

f

x

x

f

x

x

xf

x

f

f

+

+

+

+

+

+

+

=

[image: image116.wmf]13

2

12

2

01

2

023

)

2

3

)(

3

2

(

)

1

3

)(

1

2

(

3

2

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

[image: image117.wmf]13

2

12

2

01

2

023

)

1

2

)(

1

3

(

)

3

2

)(

2

3

(

2

3

f

x

x

f

x

x

xf

x

f

+

+

+

+

+

+

+

=

QGFE 8:

[image: image118.wmf]03

2

02

2

01

2

123

)

3

)(

2

(

)

2

)(

3

(

)

1

)(

1

(

f

x

x

f

x

x

f

x

x

f

f

+

+

+

+

+

+

+

+

+

=

[image: image119.wmf]03

2

02

2

01

2

123

)

2

3

)(

3

2

(

)

1

3

)(

1

2

(

)

3

3

)(

2

2

(

f

x

x

f

x

x

f

x

x

f

+

+

+

+

+

+

+

+

+

=

[image: image120.wmf]03

2

02

2

01

2

123

)

1

2

)(

1

3

(

)

3

2

)(

2

3

(

)

2

2

)(

3

3

(

f

x

x

f

x

x

f

x

x

f

+

+

+

+

+

+

+

+

+

=

QGFE 9:

[image: image121.wmf])

3

2

)(

2

3

(

1

)

3

3

)(

2

2

(

1

2

0123

2

0

×

×

×

×

+

+

+

=

xf

f

x

xf

x

f

f

Proof: From the expansion of (15) and the definition of quaternary 1-RPL of (11) to (14), we have

[image: image122.wmf]3

2

3

2

2

3

1

2

3

0

3

)

2

3

(

)

3

2

(

)

(

)

1

(

f

x

x

x

f

x

x

x

f

x

x

x

f

x

f

+

+

+

+

+

+

+

+

+

+

=

[image: image123.wmf]3

2

3

2

2

3

1

2

3

0

3

0

)

2

3

(

)

3

2

(

)

(

f

x

x

x

f

x

x

x

f

x

x

x

f

x

f

+

+

+

+

+

+

+

+

+

+

=

[image: image124.wmf]3

2

3

2

2

3

1

2

3

0

2

3

2

3

2

3

0

)

2

3

(

)

3

2

(

)

(

)]

2

3

(

)

3

2

(

)

[(

f

x

x

x

f

x

x

x

f

x

x

x

f

x

x

x

x

x

x

x

x

x

f

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=

[image: image125.wmf])

)(

2

3

(

)

)(

3

2

(

)

)(

(

3

0

2

3

2

0

2

3

1

0

2

3

0

f

f

x

x

x

f

f

x

x

x

f

f

x

x

x

f

+

+

+

+

+

+

+

+

+

+

+

+

=

[image: image126.wmf]03

2

3

02

2

3

01

2

3

0

)

2

3

(

)

3

2

(

)

(

f

x

x

x

f

x

x

x

f

x

x

x

f

+

+

+

+

+

+

+

+

+

=

[image: image127.wmf]03

02

01

0

)

2

)(

1

(

)

3

)(

1

(

)

3

)(

2

(

f

x

x

x

f

x

x

x

f

x

x

x

f

+

+

+

+

+

+

+

+

+

=

TABLE 5
An example quaternary function.

	xy
	f

	00
	0

	01
	1

	02
	2

	03
	3

	10
	1

	11
	0

	12
	3

	13
	2

	20
	2

	21
	3

	22
	0

	23
	1

	30
	3

	31
	2

	32
	1

	33
	0

Thus we prove QGFE 1. Similarly, we can prove QGFE 2 to 9. Thus we have theorem 2.

 (
5 Quaternary Galois field decision diagram

Using the QGFE 1 - 9, we can construct quaternary Galois field decision diagram (QGFDD) of any quaternary logic function. Using different choices of expansions for a variable and using different variable ordering, we can construct many Kronecker like QGFDD. By flattening these decision diagrams, we can generate several QGFSOP expressions. A decision diagram with minimum number of paths to non-zero leaves will produce a minimum QGFSOP expression. A minimum QGFSOP expression will result into a minimum quantum circuit realizing the function.
A 2-input 1-output quaternary function [GF(4) sum of x and y] is shown in Table 5. Applying QGFE 1 to variable x and QGFE 2 to variable y, we get the QGFDD for the function of Table 5 as shown in Figure 1. Observation of the QGFE 1 - 9 reveals that a QGFE is a QGFSOP of four products and each of the products is a product of one composite cofactor and one or more quaternary reversible literals. Therefore, each node of the QGFDD has four children and they are arranged from left to right in the same order as in the corresponding QGFE. In the QGFDD, we write only the subscripts of the corresponding composite cofactors along the edges and the corresponding product of reversible literals are implied. For example, we applied QGFE 1 to variable x. QGFE 1 has four parts having composite cofactors
[image: image128.wmf]0

f

,
[image: image129.wmf]01

f

,
[image: image130.wmf]02

f

, and
[image: image131.wmf]03

f

 and they are written in the QGFDD of Figure 1 along the edges of the four children of the top node. If more than one child goes to the same node, then the corresponding composite cofactors are written along the single edge separated by slash (/). If we apply QGFE 9 on both the variables x and y, then we get the QGFDD as shown in Figure 2. Construction of QGFDD is not within the scope of this paper and, therefore, is not discussed.

[image: image250.emf]z

A

B

A P











otherwise

3 if of transform -

B

A B z

Q

2 Table of sform qudit tran - 1 any is z

[image: image251.emf]A

B

A P

(GF4) B A Q  

[image: image252.emf]x

exp QGF

y

The QGFDD is flattened to write the QGFSOP expression corresponding to the QGFDD. For flattening the QGFDD, we write the products of the reversible literals of the edges and the leaf constant along all paths. For example, flattening of the left most path of the QGFDD of Figure 1 yields
[image: image132.wmf])

3

)(

2

)(

1

(

1

1

)

3

)(

2

)(

1

(

1

1

1

1

+

+

+

+

=

×

+

+

+

×

+

×

×

y

y

y

y

y

y

. As product of zero and anything is zero, we need not to flatten the paths terminated at zero-leaf. By flattening the QGFDD of Figure 1, we have the following QGFSOP expression:

[image: image133.wmf])

2

)(

1

(

3

)

3

)(

1

(

2

)

3

)(

2

(

)

2

)(

1

(

2

)

3

)(

1

(

3

)

3

)(

2

)(

1

(

1

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

=

x

x

x

x

x

x

x

x

x

y

y

y

y

y

y

y

y

y

f

(16)

Similarly, by flattening the QGFDD of Figure 2, we have the following QGFSOP expression:

[image: image134.wmf]y

x

f

+

=

 (17)
These examples show that efficient algorithms are needed to select expansion for each variable and to construct the QGFDD so that the QGFDD and the resulting QGFSOP expression are minimum. In this work, we concentrated only on developing the expansions, not on the development of the said algorithms, which will obviously be our next attention.

6 Quaternary 1-qudit reversible/quantum gates
Each of the 24 quaternary reversible-literals can be implemented as 1-qudit gates using quantum technology [8] and other reversible technologies. We will graphically represent these 1-qudit gates as shown in Figure 3.

[image: image253.emf]0

A

1

A

0

B

2 

2 

2  1 

*

0

A

*

1

A

[image: image254.emf]f

x

y

0 1 2 3

0

0123

)3 3)(2 2 (1  

)3 2)(2 3 (1  

)3 3)(2 2 (1

/ 0123 / 0

 

)3 2)(2 3 (1  

0

)3 2)(2 3 (1

/)3 3)(2 2 (1

/ 0123

 

 

QGFE9

QGFE9 QGFE9

7 Quaternary 2-qudit Muthukrishnan-Stroud gate
 family

Muthukrishnan and Stroud [8] proposed a family of 2-qudit multiple-valued gates that are realizable (theoretically shown but not tested in the lab) in liquid ion-trap quantum technology. The quaternary form of the gate family is shown in Figure 4. We will refer this family of gates as quaternary Muthukrishnan-Stroud (M-S) gates. M-S gate is basically a controlled 2-qudit gate that applies a 1-qudit transform on the controlled input B when the controlling input A is 3.

8 Quaternary Feynman gate

Quaternary Feynman gate is shown in Figure 5, where A, B are inputs, P = A is the pass through output and
[image: image135.wmf](GF4)

B

A

Q

+

=

 is the controlled output. Quaternary Feynman gate is a macro-level gate and can be realized using M-S primitive gate as shown in Figure 6. In Figure 6,
[image: image136.wmf]A

A

P

=

+

+

+

=

1

)

3

)

2

((

. If
[image: image137.wmf]0

=

A

, then
[image: image138.wmf]2

1

=

a

,
[image: image139.wmf]1

2

=

a

,
[image: image140.wmf]0

3

=

a

 and none of the transform will be applied to B and the output will be
[image: image141.wmf]B

A

B

B

Q

+

=

+

=

=

0

. If
[image: image142.wmf]1

=

A

, then
[image: image143.wmf]3

1

=

a

,
[image: image144.wmf]0

2

=

a

,
[image: image145.wmf]1

3

=

a

 and only the left transform (B+1) will be applied to B and the output will be
[image: image146.wmf]B

A

B

Q

+

=

+

=

1

. If
[image: image147.wmf]2

=

A

, then
[image: image148.wmf]0

1

=

a

,
[image: image149.wmf]3

2

=

a

,
[image: image150.wmf]2

3

=

a

 and the middle transform (B+2) will be applied on B and the output will be
[image: image151.wmf]B

A

B

Q

+

=

+

=

2

. If
[image: image152.wmf]3

=

A

, then
[image: image153.wmf]1

1

=

a

,
[image: image154.wmf]2

2

=

a

,
[image: image155.wmf]3

3

=

a

 and the right transform (B+3) will be applied on B and the output will be
[image: image156.wmf]B

A

B

Q

+

=

+

=

3

. Therefore, for all values of A, P = A and Q = A + B [GF(4)].

[image: image255.emf]1 

1  1 

1  1 

2 

B

0

0

0

0

A

1

A

0

B

1

B

B

[image: image256.emf]f

x

y

0 1 2 3

0

01

02

03

01 /1

12

13

1

13 / 12 / 01

1

13 / 12 / 01 13 / 12 / 01

1

1 QGFE

QGFE2

QGFE2

QGFE2

QGFE2

9 Quaternary Toffoli gate

Quaternary Toffoli gate is shown in Figure 7, where A and B are controlling inputs and C is the controlled input. P = A and Q = B are the pass through outputs and
[image: image157.wmf][GF(4)]

C

AB

R

+

=

 is the controlled output. Quaternary Toffoli gate is a macro-level gate and can be realized using M-S primitive gates as shown in Figure 8.

In Figure 8, the resultant transformation along the input line B is
[image: image158.wmf]B

B

=

+

+

+

1

)

3

)

2

((

, i.e.,
[image: image159.wmf]B

Q

=

. Now, we will check the correctness of P = A. If
[image: image160.wmf]0

=

B

, then
[image: image161.wmf]2

1

=

b

,
[image: image162.wmf]1

2

=

b

,
[image: image163.wmf]0

3

=

b

 and no controlled-transformation along the input line A will be applied. In this case, only the uncontrolled-transformations will be applied along the input line A and
[image: image164.wmf]A

a

=

1

,
[image: image165.wmf]A

a

a

2

2

1

2

=

=

,
[image: image166.wmf]A

A

a

a

3

2

2

2

2

3

=

×

=

=

, and
[image: image167.wmf]A

A

a

P

=

×

=

=

3

2

2

3

. If B = 1, then
[image: image168.wmf]3

1

=

b

,
[image: image169.wmf]0

2

=

b

,
[image: image170.wmf]1

3

=

b

 and only the controlled-transformations of segment-1 along the input line A will be applied. In this case,
[image: image171.wmf]A

A

a

=

+

+

+

=

1

)

3

)

2

((

1

,
[image: image172.wmf]A

a

a

2

2

1

2

=

=

,
[image: image173.wmf]A

A

a

a

3

2

2

2

2

3

=

×

=

=

, and
[image: image174.wmf]A

A

a

P

=

×

=

=

3

2

2

3

. If B = 2, then
[image: image175.wmf]0

1

=

b

,
[image: image176.wmf]3

2

=

b

,
[image: image177.wmf]2

3

=

b

 and only the controlled-transformations of segment-2 will be applied along the input line A. In this case,
[image: image178.wmf]A

a

=

1

,
[image: image179.wmf]A

a

a

a

2

2

1

)

3

)

2

2

((

1

1

2

=

=

+

+

+

=

,
[image: image180.wmf]A

A

a

a

3

2

2

2

2

3

=

×

=

=

, and
[image: image181.wmf]A

A

a

P

=

×

=

=

3

2

2

3

. If B = 3, then
[image: image182.wmf]1

1

=

b

,
[image: image183.wmf]2

2

=

b

,
[image: image184.wmf]3

3

=

b

 and only the controlled-transformations of segment-3 will be applied along the input line A. In this case,
[image: image185.wmf]A

a

=

1

,
[image: image186.wmf]A

a

a

2

2

1

2

=

=

,
[image: image187.wmf]A

A

a

a

a

3

2

2

2

1

)

3

)

2

2

((

2

2

3

=

×

=

=

+

+

+

=

, and
[image: image188.wmf]A

A

a

P

=

×

=

=

3

2

2

3

. Therefore, for all values of the controlling input B, P = A. Now we will verify the correctness of
[image: image189.wmf]AB

t

=

3

. If
[image: image190.wmf]0

=

B

, then as discussed earlier,
[image: image191.wmf]A

a

=

1

,
[image: image192.wmf]A

a

2

2

=

,
[image: image193.wmf]A

a

3

3

=

. If A = 0, then
[image: image194.wmf]0

3

2

1

=

=

=

a

a

a

 and no controlled-transformation will be applied along the constant input line 0. So,
[image: image195.wmf]AB

t

t

t

=

×

=

=

=

=

0

0

0

3

2

1

. If A = 1, then
[image: image196.wmf]1

1

=

a

,
[image: image197.wmf]2

2

=

a

,
[image: image198.wmf]3

3

=

a

 and only the controlled-transformations of segment-3 will be applied along the constant input line 0. So,
[image: image199.wmf]0

2

1

=

=

t

t

,
[image: image200.wmf]AB

t

=

×

=

=

+

+

+

=

0

1

0

3

)

2

)

1

0

((

3

. If
[image: image201.wmf]2

=

A

, then
[image: image202.wmf]2

1

=

a

,
[image: image203.wmf]3

2

=

a

,
[image: image204.wmf]1

3

=

a

 and only the controlled-transformations of segment-2 will be applied along the constant input line 0. So,
[image: image205.wmf]0

1

=

t

,
[image: image206.wmf]0

3

)

2

)

1

0

((

2

=

+

+

+

=

t

,
[image: image207.wmf]AB

t

t

=

×

=

=

=

0

2

0

2

3

. If
[image: image208.wmf]3

=

A

, then
[image: image209.wmf]3

1

=

a

,
[image: image210.wmf]1

2

=

a

,
[image: image211.wmf]2

3

=

a

 and only the controlled-transformations of segment-1 will be applied along the constant input line 0. So,
[image: image212.wmf]0

3

)

2

)

1

0

((

1

=

+

+

+

=

t

,
[image: image213.wmf]AB

t

t

t

=

×

=

=

=

=

0

3

0

1

3

2

. Therefore, for B = 0 and all possible values of A,
[image: image214.wmf]AB

t

=

3

. In a similar fashion, it can be shown that for all possible values of A and B,
[image: image215.wmf]AB

t

=

3

. Segment-4 of Figure 8 is a quaternary Feynman gate and the output R = AB + C [GF(4)]. A mirror circuit can be used at the right of segment-4 to restore the constant 0 for further use in the cascaded application of the gate.

[image: image257.emf]1  2 

3 

A

B

1

a

2 

3 

1 

2

a

3

a

A P

[GF(4)] B A Q  

Toffoli gates with more than three inputs are often used. A four-input Toffoli gate and its realization using three-input Toffoli gates are shown in Figure 9. The first three-input Toffoli gate with input 0 is used to generate AB. The second three-input Toffoli gate is used to generate
[image: image216.wmf](GF4)

)

(

D

C

AB

+

×

. The third Toffoli gate is used as a mirror gate to restore the constant 0 for reusing in the next stage of the cascade. Using similar technique, Toffoli gate with any number of inputs can be realized.

[image: image258.emf]A

B

C

A P

B Q

[GF(4)] C AB R  

10 Synthesis of QGFSOP expression

The synthesis of a QGFSOP expression can be done as follows:
1. Realize a literal of a variable by using a quaternary 1-qudit gate.
2. If multiple literals of a variable is simultaneously needed, generate copies of the variable using quaternary Feynman gates by connecting the variable to the controlling input and putting a 0 to the controlled input [0 + x (GF4) = x]. Then realize the literals along the copies.
3. Realize a QGF product using a quaternary Toffoli gate by connecting the literals of the product to the controlling inputs and a 0 to the controlled input [0 + xyz (GF4) = xyz].

4. Realize a sum of two products by connecting the controlled output of the first Toffoli gate (implementing the first QGF product) to the controlled input of the second Toffoli gate (implementing the second QGF product).
Realization of the QGFSOP expression of (16) is shown in Figure 10. The QGFSOP expression (17) can be implemented with a single Feynman gate.

11 Binary-to-quaternary encoder and quaternary-
 to-binary decoder circuits

The developed QGFSOP method can be effectively used for synthesis of binary function by grouping 2-bit together into quaternary value. For this purpose we need binary-to-quaternary encoder and quaternary-to-binary decoder circuits.

[image: image259.emf]A

B

0

C

2 

3 

1 

B Q

2 

3 

1   2 2 

3 

1   2 2 

3 

1   2 A P

1  2 

3 

1  2 

3 

1  2 

3 

2 

3 

1 

1  2 

3 

AB

[GF(4)] C AB R  

1

a

1

b

1

t

2

a

2

b

2

t

3

a

3

b

AB t



3

1 Segment

2 Segment

3 Segment 4 Segment

A binary-to-quaternary encoder circuit using quaternary 1-qudit gates and 2-qudit M-S gates is shown in Figure 11. It is assumed that among the four quaternary qudit states only 0 and 1 will used for inputs
[image: image217.wmf]0

1

A

A

. If
[image: image218.wmf]00

0

1

=

A

A

, then
[image: image219.wmf]22

*

0

*

1

=

A

A

and no transformation will be applied on B, therefore,
[image: image220.wmf]0

=

B

. If
[image: image221.wmf]01

0

1

=

A

A

, then
[image: image222.wmf]23

*

0

*

1

=

A

A

and only +1 transformation will be applied on B, therefore,
[image: image223.wmf]1

=

B

. If
[image: image224.wmf]10

0

1

=

A

A

, then
[image: image225.wmf]32

*

0

*

1

=

A

A

and only +2 transformation will be applied on B, therefore,
[image: image226.wmf]2

=

B

. If
[image: image227.wmf]11

0

1

=

A

A

, then
[image: image228.wmf]33

*

0

*

1

=

A

A

and both +1 and +2 transformations will be applied on B, therefore,
[image: image229.wmf]3

=

B

.

[image: image260.emf]A

B

0

C

D

AB

A

B

0

C

D ABC

A

B

C

D ABC

A

B

C

D

Symbol (a)

n Realizatio (b)

[image: image261.emf]x

0

0

0

x

x

x

1  x

x

x

2  x

3  x

x 2

x 3

y

0

0

0

y

1  y

2  y

3  y

y 2

y 3

0

0

0

0

1

f

y

y

y

y

A quaternary-to-binary decoder circuit using quaternary Feynman gate, 1-qudit gates, and 2-qudit M-S gates is shown in Figure 12. If
[image: image230.wmf]0

=

B

, then
[image: image231.wmf]21

0

1

=

B

B

 and no transformation will be applied along
[image: image232.wmf]1

A

 and
[image: image233.wmf]0

A

, therefore,
[image: image234.wmf]00

0

1

=

A

A

. If
[image: image235.wmf]1

=

B

, then
[image: image236.wmf]32

0

1

=

B

B

 and only +1 transformation will be applied along
[image: image237.wmf]0

A

 and no transformation will be applied along
[image: image238.wmf]1

A

, therefore,
[image: image239.wmf]01

0

1

=

A

A

. If
[image: image240.wmf]2

=

B

, then
[image: image241.wmf]03

0

1

=

B

B

 and only +1 transformation will be applied along
[image: image242.wmf]1

A

 and no transformation will be applied along
[image: image243.wmf]0

A

, therefore,
[image: image244.wmf]10

0

1

=

A

A

. If
[image: image245.wmf]3

=

B

, then
[image: image246.wmf]12

0

1

=

B

B

 and +1 transformation will be applied along both
[image: image247.wmf]1

A

 and
[image: image248.wmf]0

A

, therefore,
[image: image249.wmf]11

0

1

=

A

A

.

12 Conclusion

Multiple-valued logic functions having many input variables can be easily expressed as Galois field sum of products (GFSOP) expression and can be realized using cascade of multiple-valued 1-qudit gates and multi-qudit Feynman and Toffoli gates [3, 5, 6]. Though a considerable number of useful works have been done on ternary logic synthesis, as far as we know, no work has yet been done on expressing quaternary function as quaternary Galois field sum of products (QGFSOP) expression and realizing the QGFSOP expression as a cascade of quaternary gates. In this paper, we have developed nine quaternary Galois field expansions (QGFE). These expansions can be used for constructing quaternary Galois field decision diagrams (QGFDD) of any quaternary function. By flattening the QGFDD we can generate quaternary Galois field sum of products (QGFSOP) expression for the function. However, in this work, we did not explore the algorithms for selecting expansion for a variable and to construct the QGFDD so that the resulting QGFDD and the QGFSOP expression are minimum. We have also shown example of implementation of QGFSOP expression as a cascade of quaternary 1-qudit gate, Feynman gate, and Toffoli gate.

For QGFSOP based quantum realization of functions with many input variables, we need to use quantum gates with many inputs. However, quantum gate with more than two inputs is very difficult to realize as a primitive gate, since interaction of more than two particles is nearly impossible to manage. In this paper, we have shown the quantum realization of macro-level quaternary 2-qudit Feynman and 3-qudit Toffoli gates on the top of theoretically liquid ion-trap realizable 1-qudit gates and 2-qudit Muthukrishnan-Stroud primitive gates [8]. We also show the realization of m-qudit (m > 3) Toffoli gates using 3-qudit Toffoli gates.

The quaternary base is very useful for encoded realization of conventional binary function by grouping two bits together into quaternary values. We show quantum circuit for binary-to-quaternary encoder and quaternary-to-binary decoder for this purpose.

The presented method is especially applicable to quantum oracles where only one function output is of importance and input qudits are copied to output. Such circuits are of particular importance in Grover algorithm or similar quantum algorithms. Our method can be adapted to multi-output reversible functions with paying the price of having one ancilla qudit for every output function. Observe that this method, in contrast to most methods from literature, also performs a conversion of a non-reversible function to a reversible one as a byproduct of the synthesis process. Comparing to the methods from literature, our method can be used for large functions. As it is using Galois logic, the circuits are highly testable [9]. In contrast, other papers on multiple-valued quantum logic cascade synthesis [1, 7] use the directly controlled multi-input gates based on Muthukrishnan-Stroud gates rather than the Galois-based Toffoli gates proposed here. How to build an optimal multi-input Toffoli gate using minimum number of quantum multiplexers or technology-realizable M-S gates remains an open problem. Some studies were done in [10]. It will be interesting to compare the methods from [1, 7] adapted to quaternary logic and the method proposed in this paper in terms of costs of truly quantum-realizable pulses or other low-level primitives as those discussed in [10].

Our future research includes (1) developing more QGFEs, if such expansions exist and (2) developing algorithms for (i) selecting expansion for each variable, (ii) variable ordering, and (iii) constructing QGFDD (Kronecker and pseudo-Kronecker types) for both single-output and multi-output functions so that the resulting QGFDD and the corresponding QGFSOP expression are minimized.

References

[1] Curtis, E., Perkowski, M. (2004). A transformation based algorithm for ternary reversible logic synthesis using universally controlled ternary gates. Proc. IWLS 2004, Tamecula, California, USA, 2-4 June 2004.
[2] Denler, N., Yen, B., Perkowski, M., Kerntopf, P. (2004). Synthesis of reversible circuits from a subset of Muthukrishnan-Stroud quantum multi-valued gates. Proc. IWLS 2004, Tamecula, California, USA, 2-4 June 2004.
[3] Khan, M. H. A., Perkowski, M. A., Khan, M. R., Kerntopf, P. (2005). Ternary GFSOP minimization using Kronecker decision diagrams and their synthesis with quantum cascades. Journal of Multiple-Valued Logic and Soft Computing, 11, 2005, pp. 567-602.

[4] Khan, M. H. A., Perkowski, M. A. (2004). Genetic algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates. Proc. of 2004 IEEE Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA, 19-23 June 2004, pp. 2194-2201.
[5] Khan, M. H. A., Perkowski, M. A., Khan, M. R. (2004). Ternary Galois field expansions for reversible logic and Kronecker decision diagrams for ternary GFSOP minimization. Proc. of 34th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2004), Toronto, Canada, 19-22 May 2004, pp. 58-67.
[6] Khan, M. H. A., Perkowski, M. A., Kerntopf, P. (2003). Multi-output Galois field sum of products synthesis with new quantum cascades. Proc. 33rd IEEE Int. Symp. On Multiple-Valued Logic (ISMVL 2003), Tokyo, Japan, 16-19 May 2003, pp. 146-153.
[7] Miller, D. M., Dueck, G., Maslov, D. (2004). A synthesis method for MVL reversible logic. Proc. 34th IEEE Int. Symp. On Multiple-Valued Logic (ISMVL 2004), Toronto, Canada, 19-22 May 2004, pp. 74-80.
[8] Muthukrishnan, A., Stroud Jr., C. R. (2000). Multivalued logic gates for quantum computation. Physical Review A, 62, 052309/1-8.

[9] Kalay, U., Hall, D., Perkowski, M. (1998). A minimal and universal test set for multiple-valued Galois field sum-of-products circuits. Proc. 7th Workshop on Post-Binary ULSI Systems, Fukuoka, Japan, May 1998, pp. 50-51.
[10] Giesecke, N., Kim, D. H., Hossain, S., Perkowski, M. (2007). Search for universal ternary quantum gate sets with exact minimum costs. 37th IEEE Int. Symp. On Multiple-Valued Logic (ISMVL 2007), Oslo, Norway, 14-15 May 2007.
� EMBED Visio.Drawing.6 ���

FIGURE 4

Quaternary Muthukrishnan-Stroud gate family.

� EMBED Visio.Drawing.6 ���

FIGURE 5

Quaternary Feynman gate.

� EMBED Visio.Drawing.6 ���

FIGURE 3

Representation of quaternary reversible 1-qudit gates.

� EMBED Visio.Drawing.6 ���

FIGURE 11

Binary-to-quaternary encoder circuit using quaternary 1-qudit gates and 2-qudit M-S gates.

� EMBED Visio.Drawing.6 ���

FIGURE 2

QGFDD for the function of Table 5 using QGFE9.

� EMBED Visio.Drawing.6 ���

FIGURE 12

Quaternary-to-binary decoder circuit using quaternary Feynman gate, 1-qudit gates and 2-qudit M-S gates.

TABLE 2

Basic quaternary reversible-literals.

Input�
x�
x+1�
x+2�
x+3�
�
0

1

2

3�
0

1

2

3�
1

0

3

2�
2

3

0

1�
3

2

1

0�
�
Input�
2x�
2x+1�
2x+2�
2x+3�
�
0

1

2

3�
0

2

3

1�
1

3

2

0�
2

0

1

3�
3

1

0

2�
�
Input�
3x�
3x+1�
3x+2�
3x+3�
�
0

1

2

3�
0

3

1

2�
1

2

0

3�
2

1

3

0�
3

0

2

1�
�
Input�
x2�
x2+1�
x2+2�
x2+3�
�
0

1

2

3�
0

1

3

2�
1

0

2

3�
2

3

1

0�
3

2

0

1�
�
Input�
2x2�
2x2+1�
2x2+2�
2x2+3�
�
0

1

2

3�
0

2

1

3�
1

3

0

2�
2

0

3

1�
3

1

2

0�
�
Input�
3x2�
3x2+1�
3x2+2�
3x2+3�
�
0

1

2

3�
0

3

2

1�
1

2

3

0�
2

1

0

3�
3

0

1

2�
�

� EMBED Visio.Drawing.6 ���

FIGURE 1

QGFDD for the function of Table 5 using QGFE1 and 2.

� EMBED Visio.Drawing.6 ���

FIGURE 6

Realization of quaternary Feynman gate. [+1 (x + 1, +2 (x + 2, +3 (x + 3, where x is the corresponding input]

� EMBED Visio.Drawing.6 ���

FIGURE 7

Quaternary Toffoli gate.

� EMBED Visio.Drawing.6 ���

FIGURE 8

Realization of quaternary Toffoli gate. [+1 (x + 1, +2 (x + 2, +3 (x + 3, 2((2x, where x is the corresponding input]

� EMBED Visio.Drawing.6 ���

FIGURE 9

Four-input quaternary Toffoli gate.

� EMBED Visio.Drawing.6 ���

FIGURE 10

Realization of QGFSOP expression.

_1238998934.unknown

_1239004486.unknown

_1239005176.unknown

_1239005274.unknown

_1239005369.unknown

_1239006933.unknown

_1239006950.unknown

_1239006967.unknown

_1239006986.unknown

_1239348099.unknown

_1239348152.unknown

_1239348233.unknown

_1239007114.vsd
�

1�

�

_1239008397.vsd
�

1�

�

_1239006978.unknown

_1239006981.unknown

_1239006974.unknown

_1239006961.unknown

_1239006963.unknown

_1239006954.unknown

_1239006940.unknown

_1239006947.unknown

_1239006937.unknown

_1239005387.unknown

_1239005403.unknown

_1239005808.unknown

_1239006482.vsd
�

�

_1239006829.vsd
�

1�

�

_1239005653.vsd

_1239005395.unknown

_1239005375.unknown

_1239005384.unknown

_1239005372.unknown

_1239005315.unknown

_1239005355.unknown

_1239005361.unknown

_1239005364.unknown

_1239005358.unknown

_1239005320.unknown

_1239005323.unknown

_1239005318.unknown

_1239005295.unknown

_1239005308.unknown

_1239005310.unknown

_1239005299.unknown

_1239005290.unknown

_1239005294.unknown

_1239005280.unknown

_1239005237.unknown

_1239005260.unknown

_1239005269.unknown

_1239005271.unknown

_1239005264.unknown

_1239005243.unknown

_1239005247.unknown

_1239005239.unknown

_1239005196.unknown

_1239005206.unknown

_1239005227.unknown

_1239005201.unknown

_1239005190.unknown

_1239005192.unknown

_1239005186.unknown

_1239005100.unknown

_1239005139.unknown

_1239005161.unknown

_1239005171.unknown

_1239005173.unknown

_1239005167.unknown

_1239005156.unknown

_1239005158.unknown

_1239005142.unknown

_1239005122.unknown

_1239005131.unknown

_1239005136.unknown

_1239005126.unknown

_1239005106.unknown

_1239005119.unknown

_1239005103.unknown

_1239004539.unknown

_1239005044.unknown

_1239005089.unknown

_1239005096.unknown

_1239005085.unknown

_1239004543.unknown

_1239004763.vsd

_1239004947.vsd

_1239004552.unknown

_1239004541.unknown

_1239004521.unknown

_1239004532.unknown

_1239004536.unknown

_1239004524.unknown

_1239004514.unknown

_1239004517.unknown

_1239004511.unknown

_1238999074.unknown

_1239000083.unknown

_1239004455.unknown

_1239004474.unknown

_1239004481.unknown

_1239004483.unknown

_1239004478.unknown

_1239004462.unknown

_1239004465.unknown

_1239004458.unknown

_1239002105.unknown

_1239003853.vsd
�

_1239004373.unknown

_1239004445.unknown

_1239004229.vsd
�

_1239002718.vsd

_1239003228.vsd

_1239002108.unknown

_1239002425.vsd
�

_1239002100.unknown

_1239002103.unknown

_1239000089.unknown

_1238999125.unknown

_1238999138.unknown

_1238999605.unknown

_1238999892.unknown

_1238999918.unknown

_1238999746.unknown

_1238999141.unknown

_1238999133.unknown

_1238999135.unknown

_1238999128.unknown

_1238999113.unknown

_1238999119.unknown

_1238999122.unknown

_1238999116.unknown

_1238999107.unknown

_1238999110.unknown

_1238999105.unknown

_1238998992.unknown

_1238999017.unknown

_1238999062.unknown

_1238999067.unknown

_1238999071.unknown

_1238999065.unknown

_1238999024.unknown

_1238999056.unknown

_1238999021.unknown

_1238999006.unknown

_1238999011.unknown

_1238999014.unknown

_1238999008.unknown

_1238998999.unknown

_1238999003.unknown

_1238998996.unknown

_1238998962.unknown

_1238998976.unknown

_1238998981.unknown

_1238998989.unknown

_1238998978.unknown

_1238998969.unknown

_1238998973.unknown

_1238998966.unknown

_1238998948.unknown

_1238998956.unknown

_1238998959.unknown

_1238998954.unknown

_1238998941.unknown

_1238998944.unknown

_1238998938.unknown

_1238947304.unknown

_1238994602.unknown

_1238998896.unknown

_1238998919.unknown

_1238998925.unknown

_1238998929.unknown

_1238998922.unknown

_1238998911.unknown

_1238998915.unknown

_1238998908.unknown

_1238994699.unknown

_1238994752.unknown

_1238994791.unknown

_1238994724.unknown

_1238994654.unknown

_1238994677.unknown

_1238994629.unknown

_1238947503.unknown

_1238994511.unknown

_1238994557.unknown

_1238994580.unknown

_1238994533.unknown

_1238994467.unknown

_1238994488.unknown

_1238994447.unknown

_1238947402.unknown

_1238947450.unknown

_1238947480.unknown

_1238947423.unknown

_1238947358.unknown

_1238947380.unknown

_1238947330.unknown

_1238944776.unknown

_1238946864.unknown

_1238947103.unknown

_1238947237.unknown

_1238947266.unknown

_1238947167.unknown

_1238947061.unknown

_1238947084.unknown

_1238947043.unknown

_1238946608.unknown

_1238946775.unknown

_1238946832.unknown

_1238946765.unknown

_1238946297.unknown

_1238946531.unknown

_1238944865.unknown

_1232195820.unknown

_1238932194.unknown

_1238932666.unknown

_1238932801.unknown

_1238933134.unknown

_1238933209.unknown

_1238933610.unknown

_1238944671.unknown

_1238933254.unknown

_1238933176.unknown

_1238932911.unknown

_1238932750.unknown

_1238932762.unknown

_1238932702.unknown

_1238932394.unknown

_1238932566.unknown

_1238932317.unknown

_1238931627.unknown

_1238931927.unknown

_1238932118.unknown

_1238931773.unknown

_1232195837.unknown

_1238931302.unknown

_1238931427.unknown

_1232195844.unknown

_1238931248.unknown

_1232195840.unknown

_1232195828.unknown

_1232195832.unknown

_1232195824.unknown

_1232195783.unknown

_1232195804.unknown

_1232195811.unknown

_1232195816.unknown

_1232195807.unknown

_1232195794.unknown

_1232195800.unknown

_1232195787.unknown

_1232195725.unknown

_1232195777.unknown

_1232195780.unknown

_1232195729.unknown

_1232193227.unknown

_1232195716.unknown

_1232193180.unknown

