

 An efficient greedy algorithm to create adaptive trees for fault
localization in binary reversible circuits

Kavitha Ramasamy, Radhika Tagare, Ed Perkins and Marek Perkowski

Department of Electrical and Computer Engineering, Portland State University,
Portland, Oregon, 97207-0751, mperkows@ee.pdx.edu

 Abstract

There is recently an interest in test generation for
reversible circuits, but nothing has been published about
fault localization in such circuits. The paper deals with
fault localization for binary permutative reversible
circuits. We concentrate on functional test based fault
localization, and we generate an adaptive tree that
depicts those faults that can be detected and localized. A
striking property of reversible circuits is that they exhibit
“symmetric” adaptive trees. This helps considerably by
being able to generate only half of the tree, and the other
half is created as the mirror image of the first half.
Because each test covers half faults, it is relatively easy
to generate the tree using a greedy algorithm. Thus the
problem of fault localization of reversible circuits is
easier than the same problem for standard irreversible
circuits.

1. INTRODUCTION

Low power consumption is a major issue in VLSI circuits
today. As the transistor size decreases, power consumption
and heat dissipation become two major problems for the IC
designers. Techniques like voltage scaling, low power
layout are already in practice to obtain circuits with low
power. The motivation for studying reversible adiabatic
circuits comes mainly from this increasing demand for low
energy dissipation computation [5]. Reversible circuits
play also a vital role in quantum computing [6] and
emerging nanotechnologies [7, 8, 9]. To ensure the proper
functionality and the durability of an integrated circuit;
testing and failure analysis are extremely important during
and after its design and manufacturing. The main idea
behind fault localization in future highly parallel redundant
logic systems is self-repair based on localization and
replacement of faulty modules. We show that this task is
easier when the circuit is reversible.

2. TEST GENERATION AND FAULT

LOCALIZATION

Testing of a circuit verifies the correctness of the hardware.
Any circuit can be tested either by parametric or by functional
tests. Parametric tests include verifying several parameters of a
circuit like its AC, DC parameters, maximum current,

maximum power dissipation etc. Functional tests include
verifying if the circuit under consideration functions exactly as
desired. An undesired instance in the circuit is referred to as a
fault. Thus they may occur due to logical flaw in the behavioral
or structural design of the integrated circuit (IC) categorized as
single/multiple stuck at faults or due to some physical flaws in
the manufacturing process of the IC like bridging or delay
faults. Whereas a fixed logical value (‘0’ or ‘1’) at one or more
nodes of a circuit is the cause for single/multiple “stuck-at
faults”. A model that depicts the failures in the functional
behavior of the circuit is called as fault model. Most commonly
used fault model is the “single stuck-at” fault model.

There are two aspects to testing a circuit. One is Fault
Detection and the other is termed Fault Localization. Detecting
the presence of fault in a circuit is called fault detection
whereas finding the exact location of this fault comes under the
name of fault localization. So far, nothing has been published
on self-repair and fault-localization of reversible circuits,
although it is a common agreement that future technologies will
be both low power and fault-tolerant. The paper uses a novel
approach to choose an input test vector depending on the choice
of circuit partitions. A counter-example test vector at this
chosen partition is applied to find the corresponding test vector
at the inputs, and then the test vector is checked for its coverage
measure. Our goal is to try to use this approach to locate booth
the unique and equivalent faults in reversible circuits, while
trying to generate a symmetric adaptive tree.

In our approach we focus on functional test based fault
localization to locate single stuck at faults in binary reversible
circuits.

3. PREVIOUS WORK ON TESTING BINARY
REVERSIBLE CIRCUITS

3.1. Test generation for reversible circuits and design

for test of reversible circuits.

Patel et al., [1] use a direct approach to generate set of test
vectors to detect all faults in a reversible logic circuit by
decomposing larger circuits into smaller sub-circuits (block
partitioning). They formulate finding the minimal test set as an
Integer Linear Programming (ILP) problem. Single stuck-at
fault model is used to detect faults in internal lines and primary

 1

mailto:mperkows@ee.pdx.edu

input and output lines of the circuit. Their main contribution are
the following observations regarding reversible circuits:

i) Any test set that is complete for the single stuck-at
fault model is also complete for multiple stuck-at fault
model.

ii) Each test vector covers exactly half of the faults, and
each fault is covered by exactly half of the possible
test vectors.

Ugur Kalay et al., [2] use universal test set to detect faults in
AND-EXOR based circuits. They too use a similar fault model
as Patel et al. This method can be adopted for a special type of
reversible cascades that are based on ESOP circuits [4]. Both
[1] and [2] focus only on fault detection. Because of importance
of fault localization, we extend these works towards this new
aspect of reversible circuits.

3.2. Fault Localization of irreversible circuits

The two most popular approaches to Fault Localization are A)
Preset Method and B) Adaptive Tree Method [3]. In literature,
both methods starts from a fault table which has tests (input
vectors) as rows and all possible faults as columns. The goal of
preset method is to find a minimal test set to locate all the faults
in the circuit. The minimal test set is found using the algorithm
to solve the covering problem which limits the applicability of
this approach to relatively small problems. Therefore we
concentrate on only the Adaptive Tree Method in this research.

branch ends with a single fault. This is the fault that can be
located exactly by sequentially applying the tests at every node
on the path reaching the fault; from top to bottom of the
adaptive tree. Observe that in case of non-reversible circuit the
tree is created based on the fault table. At each level of
recursive tree generation, an attempt is made to choose a row in
this table that approximately covers half of the faults remaining
in this node. This requires first to create the table which may be
very large, and next, it is difficult to select the good row, since
there are many candidates and often none is close to covering
half faults. In reversible circuits, because of property ii), every
test covers half faults, thus tree generation is easier and
moreover, it does not require creating the table, which
substantially increases the efficiency.

Note: Observe in the Figure that fault f4 passes through the
tests at every level. Hence this path in the adaptive tree
corresponds to the faultless circuit.

4. ADAPTIVE TREE GENERATION FOR REVERSIBLE
CIRCUITS.

We focus here on functional test based Fault Localization to
locate single stuck-at faults in binary reversible circuits which
particularly comprise of Toffoli, Feynman and NOT gates. We
assume circuits with faults only in internal lines, primary input
To speed up the method and allow it to be used without
generating all tests, we created an algorithm that does not create
the fault table at all. This way, adaptive trees can be created for
large circuits.

The Adaptive Tree Method. Adaptive tree is represented by a
directed tree data structure. Fig. 1 shows an example of an
Adaptive Tree. In the figure, the nodes correspond to various
tests and the branches correspond to different circuit responses
to these tests. Selection of a test to be applied on the current
level is determined by the response of the circuit to the chosen
test in the previous level of the tree. The choice of the test at
each node is based on the following rule: at every node choose
a test that partitions the incoming subset/set of faults into the
balanced subsets of faults (i.e. with their cardinalities as close
as possible). (Such choice creates a well-balanced tree, thus the
tree allows for the fastest fault localization assuming equal
faults probabilities). One subset is of the faults that can be
detected by this test and the other is of those which can not be
detected by this test. This procedure is continued until every

lines and output lines of the circuit. The circuit is analyzed by
partitioning it into sub-circuits assuming one gate per every
wire of the partition. Our approach to fault localization is based
on the greedy heuristics for the adaptive tree method. The two
already mentioned characteristics of the reversible circuits by
Patel et al [1] make reversible circuits exhibit a nice symmetry.

We thus can get a balanced adaptive tree as shown above in
Fig. 1. This tree is said to be symmetric because for a particular
level the same test vector can be used for partitioning at every
node. Due to this symmetry property observed in reversible
circuits, adaptive trees for reversible circuits exhibit a special
mirror image property when folded over the test at level 0.
Another advantage of Adaptive Tree approach is that it avoids
creation of the entire fault cover table for every test vector and
all possible faults. Thus saving time and memory space wasted
otherwise, by the Preset method; where all the tests need to be
applied regardless of the circuit output. So we also require less
number of test vectors generated for our approach.

 2

Adaptive tree

T0

T1 T1

T2 T2 T2T2

T4 T4 T4

f0,f1,f2,f3,f4,f5,f6

f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13

f7,f8,f9,f10,f11,f12,f13

f0,f1,f3,f4 f2,f5,f6 f9,f12,f13 f7,f8,f10,f11

f2

f1 f3

f5

f13 f9 f11f2 f6 f7

f1,f3 f7,f11
f9,f13

f8,f10

f10 f8

T4T4 T4

f4 f0

f0,f4 f2,f6

P F

P

P P

PP P

P

P P

P

P

F

F

F F

F FFF F

F

5. SIMULATOR OF REVERSIBLE CIRCUITS.

We designed a simulator to analyze binary reversible circuits
by mainly evaluating the circuit output for a particular input
test vector applied to it. The simulator is designed to scan the
circuit description first. Therefore it can operate in two
directions, either forward or backward. It operates in forward

direction to find the output of the circuit at every node of every
partition in the circuit. The simulator operates in the backward
direction to find the input test vector corresponding to counter-
example vector applied at some partition of the circuit.
Observe, that it is again the property of reversible circuits that
allows for easy simulation of a circuit in both directions and in
exactly the same way, because for each n-bit reversible cell F
there exist a unique inverse cell F-1. Moreover, the Feynman and
Toffoli gates that we use are their own inverses which speeds-
up the simulation further.

 3

Fig. 2. Example of a binary reversible circuit

In Fig. 2 A, B and C are the basic input wires. P0, P1, P2, P3,
P4 are the partitions such that only one gate is covered per
partition. P, Q, R are the final circuit outputs. The output table
representing the logical values at each node of every partition
can thus be written in the form of an array, out[P][N], where N
is the number of wires, and P is the number of partitions.

Algorithm for Fault Localization

1) The fault table is created and updated incrementally

together with generating the adaptive tree. It is built as the
tree is expanded from the root to leafs by adding new
nodes (this is a free tree, variables are not ordered). This
fault table describes only the s-a-0 faults covered by a
particular test vector. For every level we update this fault
table to represent only the remaining uncovered s-a-0 faults
for the entire circuit.

2) Level 0: For any reversible circuit, test vector T0
detects all s-a-1 faults. Hence we always choose T0 for the
Level 0.

3) For all Levels ahead :

a) Select a partition for which the fault table shows
maximum number of uncovered faults and mark
that partition as checked.

b) Find the counter test vector at that partition.
c) Backtrack in the circuit from this point using the

backward simulator function, to find the
corresponding input test vector.

d) Apply this input test vector to the given circuit to
find the output using the forward simulator
function.

e) Get the output table : out[P][N]
f) Check if this input test vector divides the

uncovered faults (looking at the fault table) from
the previous level into half.

g) If so, the test is good. Then check if the same test
holds good for all other nodes in the same level.

- if not then discard the test. Go to step h)
- if good go to step i)

h) If the test is not good,

- If all partitions are not checked, then choose a
partition which is next maximum and repeat
step b) onwards.

 - If all partitions are checked, then
 choose the input test vector which
 divides the uncovered faults into
 nearly half subsets.

- Update the fault table by marking
the covered faults by this chosen test

 vector. Go to step i)
i) Repeat steps a) through i) until all distinct s-a-0

faults except one, from the fault table are covered
for every node in that level.

6. CONSIDERING EQUIVALENT FAULTS

When the output at two or more nodes of the circuit is identical
for any input test vector applied to the circuit, then those nodes
are said to be equivalent nodes. In our algorithm we deal with
equivalent nodes which are adjacent to each other. In other
words these nodes are nothing but a wire separated by the
logical partitions P0, P1 etc. For example in the given circuit in
Fig. 2 nodes n0 at partitions P0 and P1 are the equivalent
nodes. In our incremental fault table we represent the
equivalent nodes either by a ‘2’ or ‘3’ depending on its logical
value ‘0’ or ‘1’. While considering the uncovered faults in a
partition, we count the equivalent faults too; if uncovered until
the moment.

Particulars to be noted

1) If there are N wires, then 2N is the maximum possible
input test vector. We restrict ourselves to a certain
number of test vectors as we choose a test vector
depending on choice of partition. Thus, the number of
actual possible input test vectors for a particular circuit
will depend on the number of partitions. Hence we can
actually use only 2P input test vectors.

2) The major consequence is that while doing so we
might loose on some good test vectors at a particular
node, which exactly divide the faults into two equal
subsets of covered and uncovered faults.

3) Also another consequence is that we might loose on
some good test vectors at a particular level, where in
same test vector can be applied at every node in that
level.

4) The effect of all these is that the adaptive tree will not
be balanced.

7. FUTURE WORK

It is assumed in the algorithm that all stuck-at-one faults are
covered by a test vector which is all zeros; denoted by T0. But
this holds true under the assumption that the circuit under test
does not include any NOT gates i.e. inverters. Currently we are
redesigning the algorithm to take NOT gates also into account.

In future, we also plan to modify our algorithm to incorporate
for fault localization in binary and multi-valued quantum
circuits.

 4

8. CONCLUSIONS

The program was tested on several reversible circuits from the
literature [10]. Because of the lack of large benchmarks, we
have to create such circuits randomly, which is perhaps not a
good idea, but nothing better can be done since there are no
good synthesizers so far for very large reversible functions.
From the examples of the not more than 8 qubit circuits that we
analyzed it seems that the symmetric property holds true. The
tree obtained is mostly balanced in these cases. Further testing
and analysis of data is necessary on larger examples.

REFERENCES

1. K.N. Patel, J.P. Hayes and I. Markov, “Fault testing for
reversible circuits,” Proc. VLSI Test Symp. (VTS 03),
Napa, CA, pp. 410–416, April 2003

2. U. Kalay, N. Venkataramaiah, A. Mishchenko, D. V.
Hall, and M. A. Perkowski, “Highly Testable Finite
State Machines Based on EXOR Logic”, PACRIM'99

7th IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, Victoria, B.C.,
Canada, August 23-25, 1999

3. Z. Kohavi, “Switching and Finite Automata Theory,
McGraw Hill, 1978.

4. A. Mishchenko and M. Perkowski, ``Fast Heuristic
Minimization of Exclusive Sums-of-Products,'' Proc.
RM'2001 Workshop, August 2001

5. C. Bennett, “Logic Reversibility of Computation,” IBM
J. Res. Dev. 17:525-532, 1973.

6. M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press,
2000.

7. R. C. Merkle. Reversible electronic logic using switches.
Nanotechnology, 4: pp. 21-40, 1993.

8. R. C. Merkle. Two types of mechanical reversible logic.
Nanotechnology, 4: pp. 114-131,1993.

9. R. C. Merkle and K. E. Drexler. Helical logic.
Nanotechnology, 7: pp. 325-339, 1996.

10. D. Maslov, Reversible Logic Synthesis, Ph.D. Thesis,
University of New Brunswick, 2003.

 5

