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   Abstract  
 

There is recently an interest in test generation for 
reversible circuits, but nothing has been published about 
fault localization in such circuits. The paper deals with 
fault localization for binary permutative reversible 
circuits. We concentrate on functional test based fault 
localization, and we generate an adaptive tree that 
depicts those faults that can be detected and localized. A 
striking property of reversible circuits is that they exhibit 
“symmetric” adaptive trees. This helps considerably by 
being able to generate only half of the tree, and the other 
half is created as the mirror image of the first half. 
Because each test covers half faults, it is relatively easy 
to generate the tree using a greedy algorithm. Thus the 
problem of fault localization of reversible circuits is 
easier than the same problem for standard irreversible 
circuits. 

 
1. INTRODUCTION 

 
Low power consumption is a major issue in VLSI circuits 
today. As the transistor size decreases, power consumption 
and heat dissipation become two major problems for the IC 
designers. Techniques like voltage scaling, low power 
layout are already in practice to obtain circuits with low 
power. The motivation for studying reversible adiabatic 
circuits comes mainly from this increasing demand for low 
energy dissipation computation [5]. Reversible circuits 
play also a vital role in quantum computing [6] and 
emerging nanotechnologies [7, 8, 9]. To ensure the proper 
functionality and the durability of an integrated circuit; 
testing and failure analysis are extremely important during 
and after its design and manufacturing. The main idea 
behind fault localization in future highly parallel redundant 
logic systems is self-repair based on localization and 
replacement of faulty modules. We show that this task is 
easier when the circuit is reversible. 

 
2. TEST GENERATION AND FAULT 

LOCALIZATION  
 

Testing of a circuit verifies the correctness of the hardware. 
Any circuit can be tested either by parametric or by functional 
tests. Parametric tests include verifying several parameters of a 
circuit like its AC, DC parameters, maximum current, 

maximum power dissipation etc. Functional tests include 
verifying if the circuit under consideration functions exactly as 
desired. An undesired instance in the circuit is referred to as a 
fault. Thus they may occur due to logical flaw in the behavioral 
or structural design of the integrated circuit (IC) categorized as 
single/multiple stuck at faults or due to some physical flaws in 
the manufacturing process of the IC like bridging or delay 
faults. Whereas a fixed logical value (‘0’ or ‘1’) at one or more 
nodes of a circuit is the cause for single/multiple “stuck-at 
faults”. A model that depicts the failures in the functional 
behavior of the circuit is called as fault model. Most commonly 
used fault model is the “single stuck-at” fault model.  
 
There are two aspects to testing a circuit. One is Fault 
Detection and the other is termed Fault Localization. Detecting 
the presence of fault in a circuit is called fault detection 
whereas finding the exact location of this fault comes under the 
name of fault localization. So far, nothing has been published 
on self-repair and fault-localization of reversible circuits, 
although it is a common agreement that future technologies will 
be both low power and fault-tolerant. The paper uses a novel 
approach to choose an input test vector depending on the choice 
of circuit partitions. A counter-example test vector at this 
chosen partition is applied to find the corresponding test vector 
at the inputs, and then the test vector is checked for its coverage 
measure. Our goal is to try to use this approach to locate booth 
the unique and equivalent faults in reversible circuits, while 
trying to generate a symmetric adaptive tree. 
 
In our approach we focus on functional test based fault 
localization to locate single stuck at faults in binary reversible 
circuits. 
 

3.  PREVIOUS WORK ON TESTING BINARY 
REVERSIBLE CIRCUITS 

 
3.1. Test generation for reversible circuits and design 

for test of reversible circuits. 
 

Patel et al., [1] use a direct approach to generate set of test 
vectors to detect all faults in a reversible logic circuit by 
decomposing larger circuits into smaller sub-circuits (block 
partitioning). They formulate finding the minimal test set as an 
Integer Linear Programming (ILP) problem. Single stuck-at 
fault model is used to detect faults in internal lines and primary 
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input and output lines of the circuit. Their main contribution are 
the following observations regarding reversible circuits: 

i) Any test set that is complete for the single stuck-at 
fault model is also complete for multiple stuck-at fault 
model.  

ii) Each test vector covers exactly half of the faults, and 
each fault is covered by exactly half of the possible 
test vectors. 

Ugur Kalay et al., [2] use universal test set to detect faults in 
AND-EXOR based circuits. They too use a similar fault model 
as Patel et al. This method can be adopted for a special type of 
reversible cascades that are based on ESOP circuits [4]. Both 
[1] and [2] focus only on fault detection. Because of importance 
of fault localization, we extend these works towards this new 
aspect of reversible circuits.  
 
3.2. Fault Localization  of irreversible circuits 
 
The two most popular approaches to Fault Localization are A) 
Preset Method and B) Adaptive Tree Method [3]. In literature, 
both methods starts from a fault table which has tests (input 
vectors) as rows and all possible faults as columns. The goal of 
preset method is to find a minimal test set to locate all the faults 
in the circuit. The minimal test set is found using the algorithm 
to solve the covering problem which limits the applicability of 
this approach to relatively small problems. Therefore we 
concentrate on only the Adaptive Tree Method in this research. 

branch ends with a single fault. This is the fault that can be 
located exactly by sequentially applying the tests at every node 
on the path reaching the fault; from top to bottom of the 
adaptive tree.  Observe that in case of non-reversible circuit the 
tree is created based on the fault table. At each level of 
recursive tree generation, an attempt is made to choose a row in 
this table that approximately covers half of the faults remaining 
in this node. This requires first to create the table which may be 
very large, and next, it is difficult to select the good row, since 
there are many candidates and often none is close to covering 
half faults. In reversible circuits, because of property ii), every 
test covers half faults, thus tree generation is easier and 
moreover, it does not require creating the table, which 
substantially increases the efficiency. 
 
Note: Observe in the Figure that fault f4 passes through the 
tests at every level. Hence this path in the adaptive tree 
corresponds to the faultless circuit.  
 
 
4. ADAPTIVE TREE GENERATION FOR REVERSIBLE 
CIRCUITS. 
 
We focus here  on functional test based Fault Localization to 
locate single stuck-at faults in binary reversible circuits which 
particularly comprise of Toffoli, Feynman and NOT gates. We 
assume circuits with faults only in internal lines, primary input 
To speed up the method and allow it to be used without 
generating all tests, we created an algorithm that does not create 
the fault table at all. This way, adaptive trees can be created for 
large circuits. 
 
The Adaptive Tree Method. Adaptive tree is represented by a 
directed tree data structure. Fig. 1 shows an example of an 
Adaptive Tree. In the figure, the nodes correspond to various 
tests and the branches correspond to different circuit responses 
to these tests. Selection of a test to be applied on the current 
level is determined by the response of the circuit to the chosen 
test in the previous level of the tree. The choice of the test at 
each node is based on the following rule: at every node choose 
a test that partitions the incoming subset/set of faults into the 
balanced subsets of faults (i.e. with their cardinalities as close 
as possible). (Such choice creates a well-balanced tree, thus the 
tree allows for the fastest fault localization assuming equal 
faults probabilities). One subset is of the faults that can be 
detected by this test and the other is of those which can not be 
detected by this test. This procedure is continued until every 

lines and output lines of the circuit.  The circuit is analyzed by 
partitioning it into sub-circuits assuming one gate per every 
wire of the partition. Our approach to fault localization is based 
on the greedy heuristics for the adaptive tree method. The two 
already mentioned characteristics of the reversible circuits by 
Patel et al [1] make reversible circuits exhibit a nice symmetry. 
 
We thus can get a balanced adaptive tree as shown above in 
Fig. 1. This tree is said to be symmetric because for a particular 
level the same test vector can be used for partitioning at every 
node. Due to this symmetry property observed in reversible 
circuits, adaptive trees for reversible circuits exhibit a special 
mirror image property when folded over the test at level 0. 
Another advantage of Adaptive Tree approach is that it avoids 
creation of the entire fault cover table for every test vector and 
all possible faults. Thus saving time and memory space wasted 
otherwise, by the Preset method; where all the tests need to be 
applied regardless of the circuit output. So we also require less 
number of test vectors generated for our approach.  
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5. SIMULATOR OF REVERSIBLE CIRCUITS. 
 
 
We designed a simulator to analyze binary reversible circuits 
by mainly evaluating the circuit output for a particular input 
test vector applied to it. The simulator is designed to scan the 
circuit description first. Therefore it can operate in two 
directions, either forward or backward. It operates in forward 

direction to find the output of the circuit at every node of every 
partition in the circuit. The simulator operates in the backward 
direction to find the input test vector corresponding to counter-
example vector applied at some partition of the circuit. 
Observe, that it is again the property of reversible circuits that 
allows for easy simulation of a circuit in both directions and in 
exactly the same way, because for each n-bit reversible cell F 
there exist a unique inverse cell F-1. Moreover, the Feynman and 
Toffoli gates that we use are their own inverses which speeds-
up the simulation further. 
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Fig. 2.  Example of a binary reversible circuit 
 
In Fig. 2 A, B and C are the basic input wires. P0, P1, P2, P3, 
P4 are the partitions such that only one gate is   covered per 
partition. P, Q, R are the final circuit outputs. The output table 
representing the logical values at each node of every partition 
can thus be written in the form of an array, out[P][N],  where N 
is the number of wires, and P is the number of partitions. 

 
Algorithm for Fault Localization 

 
1) The fault table is created and updated incrementally 

together with generating the adaptive tree. It is built as the 
tree is expanded from the root to leafs by adding new 
nodes (this is a free tree, variables are not ordered). This 
fault table describes only the s-a-0 faults covered by a 
particular test vector. For every level we update this fault 
table to represent only the remaining uncovered s-a-0 faults 
for the entire circuit. 
 

2) Level 0: For any reversible circuit, test vector T0 
detects all s-a-1 faults. Hence we always choose T0 for the 
Level 0. 

 
3) For all Levels ahead : 

a) Select a partition for which the fault table shows 
maximum number of uncovered faults and mark 
that partition as checked.  

b) Find the counter test vector at that partition. 
c) Backtrack in the circuit from this point using the 

backward simulator function, to find the 
corresponding input test vector. 

d) Apply this input test vector to the given circuit to 
find the output using the forward simulator 
function.   

e) Get the output table : out[P][N] 
f) Check if this input test vector divides the 

uncovered faults (looking at the fault table) from 
the previous level into half.  

g) If so, the test is good. Then check if the same test 
holds good for all other nodes in the same level. 

- if not then discard the test. Go to step h) 
- if good go to step i)  

h) If the test is not good,  

- If all partitions are not checked, then choose a 
partition which is next maximum and repeat 
step b) onwards. 

                        - If all partitions are checked, then 
                        choose the input test vector which  
                        divides the uncovered faults into   
                        nearly half subsets. 

- Update the fault table by marking  
the covered faults by this chosen test 

                        vector. Go to step i) 
i) Repeat steps a) through i) until all distinct s-a-0 

faults except one, from the fault table are covered 
for every node in that level. 

 
6. CONSIDERING EQUIVALENT FAULTS 
 
When the output at two or more nodes of the circuit is identical 
for any input test vector applied to the circuit, then those nodes 
are said to be equivalent nodes. In our algorithm we deal with 
equivalent nodes which are adjacent to each other. In other 
words these nodes are nothing but a wire separated by the 
logical partitions P0, P1 etc. For example in the given circuit in 
Fig. 2 nodes n0 at partitions P0 and P1 are the equivalent 
nodes. In our incremental fault table we represent the 
equivalent nodes either by a ‘2’ or ‘3’ depending on its logical 
value ‘0’ or ‘1’. While considering the uncovered faults in a 
partition, we count the equivalent faults too; if uncovered until 
the moment. 
 
Particulars to be noted 
 

1) If there are N wires, then 2N is the maximum possible 
input test vector. We restrict ourselves to a certain 
number of test vectors as we choose a test vector 
depending on choice of partition. Thus, the number of 
actual possible input test vectors for a particular circuit 
will depend on the number of partitions. Hence we can 
actually use only 2P input test vectors. 

2) The major consequence is that while doing so we 
might loose on some good test vectors at a particular 
node, which exactly divide the faults into two equal 
subsets of covered and uncovered faults.  

3) Also another consequence is that we might loose on 
some good test vectors at a particular level, where in 
same test vector can be applied at every node in that 
level. 

4) The effect of all these is that the adaptive tree will not 
be balanced. 

 
7. FUTURE WORK 
 
It is assumed in the algorithm that all stuck-at-one faults are 
covered by a test vector which is all zeros; denoted by T0. But 
this holds true under the assumption that the circuit under test 
does not include any NOT gates i.e. inverters. Currently we are 
redesigning the algorithm to take NOT gates also into account. 
 
In future, we also plan to modify our algorithm to incorporate 
for fault localization in binary and multi-valued quantum 
circuits.  
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8. CONCLUSIONS 
 
The program was tested on several reversible circuits from the 
literature [10]. Because of the lack of large benchmarks, we 
have to create such circuits randomly, which is perhaps not a 
good idea, but nothing better can be done since there are no 
good synthesizers so far for very large reversible functions. 
From the examples of the not more than 8 qubit circuits that we 
analyzed it seems that the symmetric property holds true. The 
tree obtained is mostly balanced in these cases. Further testing 
and analysis of data is necessary on larger examples. 
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