Basic AIML User Manual
By

Anupama Seshagiri

31
What is AIML?

32
Category

32.1
Atomic

32.2
“Default

42.3
Recursive

53
Responses

53.1
Default Responses

53.2
Random Responses

64
More about Categories

64.1
<that>

64.2
<TOPIC>

65
Conditional Elements

75.1
Block Condition

75.2
Single-predicate Condition

85.3
Multi-predicate Condition

85.4
Condition List Items

85.5
Default List Items

85.6
Value-only List Items

95.7
Name and Value List Items

95.8
Random

96
AIML Tags

106.1
Custom AIML tags

107
References

1 What is AIML?

Artificial Intelligence Markup Language is an XML compliant language which makes it easier to customize or create an ALICE bot from scratch.

The following are the most important units of AIML

· <aiml>: the tag that begins and ends an AIML document

· <category>: the tag that marks a "unit of knowledge" in an Alicebot's knowledge base

· <pattern>: contains a simple pattern that matches what a user may say or type to an Alicebot

· <template>: contains the response to a user input

2 Category
The words in a sentence can be visualized by a series of lines (or links) and nodes, in the knowledge web. The links are labeled by the words and form a chain starting from the center of the web and moving outwards. Finding the question in the Knowledge Web, the robot replies with the information it was taught (residing in a Response Template - and referred to as the Template). So, in other words, the specific question can be visualized as a kind of path - beginning at the center of the Knowledge Web and built up by a series of links and nodes, and that finally terminates in a Response Template. The specific path through the Knowledge Web along with the (Response) Template is called a Category.
Given only the <pattern> and <template> tags, there are in general three types of Categories

2.1 Atomic
Atomic categories are those with atomic patterns. i.e., the pattern contains no wild card "*" or "_" symbol. Atomic categories are the easiest, simplest categories to add in AIML.
<category>
<pattern>WHAT IS A CIRCLE</pattern>
<template><set_it>A circle</set_it> is the set of points equidistant from a common point called the center.
</template>
</category>

The above category does the following:
· Matches the client input of "What is a circle"
· Sets the "IT" variable to the value of "A circle"
· Sends the client the response: "A circle is the set of points equidistant from a common point called the center"
2.2 “Default
Default category" derives from the fact that its pattern has a wildcard "*" or "_". The ultimate default category is the one with <pattern>*</pattern>, which matches any input.
The more common default categories have patterns combining a few words and a wild card. For example the category:
<category>
<pattern>I NEED HELP *</pattern>
<template>Can you ask for help in the form of a question?</template>
</category>

responds to a variety of inputs from "I need help debugging my program" to "I need help with my homework." Putting aside the philosophical question of whether the robot really "understands" these inputs, this category elucidates a coherent response from the client, who at least has the impression of the robot understanding the client's intention.
2.3 Recursive

"Recursive" categories are those that "map" inputs to other inputs, either to simplify the language or to identify synonymous patterns. AIML implements recursion with the <srai> operator.
Many synonymous inputs have the same response. This is accomplished with the recursive <srai> tag. Take for example the input "GOODBYE". This input has dozens of synonyms: "BYE", "BYE BYE, "CYA", "GOOD BYE", and so on. To map these inputs to the same output for GOODBYE we use categories like:
 <category>
<pattern>BYE BYE</pattern>
<template><srai>GOODBYE</srai></template>
</category>
Simplification or reduction of complex input patterns is another common application for recursive categories. In English the question "What is X" could be asked many different ways: "Do you know what X is?", "Tell me about X", "Describe X", "What can you tell me about X?", and "X is what?" are just a few examples. Usually we try to store knowledge in the most concise, or common form. The <srai> function maps all these forms to the base form:
<category>
<pattern>DO YOU KNOW WHAT * IS</pattern>
<template><srai>WHAT IS <star/></srai></template>
</categroy>

The <star/> tag substitutes the value matched by "*", before the recursive call to <srai>. This category transforms "Do you know what a circle is?" to "WHAT IS A CIRCLE", and then finds the best match for the transformed input.

Another fairly common application of recursive categories is what might be called "partitioning" in which the AIML categories break down an input into two (or more) parts, and then combine their responses back together.
If a sentence begins with "Hello..." it doesn't matter what comes after the first word, in the sense that the robot can respond to "Hello" and whatever is after "..." independently. "Hello my name is Carl" and "Hello how are you" are quite different, but they show how the input can be broken into two parts.

The category:
<category>
<pattern>HELLO *</pattern>
<template><srai>HELLO</srai> <sr/>
</template>
</category>

accomplishes the input partitioning by responding to "HELLO" with <srai>HELLO</srai> and to whatever matches "*" with <sr/>. The response is the result of the two partial responses appended together.
The following are the variety of applications of <srai>

1. Symbolic Reduction: Reduce complex grammatic forms to simpler ones.

2. Divide and Conquer: Split an input into two or more subparts, and combine the responses to each.

3. Synonyms: Map different ways of saying the same thing to the same reply.

4. Spelling or grammar corrections.

5. Detecting keywords anywhere in the input.

6. Conditionals: Certain forms of branching may be implemented with <srai>.

7. Any combination of (1)-(6).

3 Responses

3.1 Default Responses

It happens often that an Input Pattern will not be found in the Knowledge Web - yet we still want the Robot to respond with something meaningful. We call this the Default Response Template - and it typically consists of sentences designed to keep the conversation going

3.2 Random Responses

A very powerful yet basic response tool is the ability to respond randomly. This will make the bot appear to be more intelligent and less predictable.

<random>
 What is your name?
 What is your favorite movie?
 Will you buy me a drink?
 </random>

This will pick one of the three responses randomly.

4 More about Categories

4.1 <that>
Using <that> the robot is capable of remembering what it said in the previous interaction. And conversations can become more meaningful.
For example:
 Bot: Today I am happy.
 Human: That is wonderful.
 Bot: But, will I still be happy tomorrow?
 Human: That no one can tell
The above can be written in the following way

<category>

<pattern>That is Wonderful</pattern>

<that> Today I am happy.</that>

<template> But, will I still be happy tomorrow?</template>

</category>
4.2 <TOPIC>

Topic lets you group together Categories. Presented Input patterns are searched for matching categories within the Robots knowledge web. If more than one matching category is found, the robot matches the <THAT> patterns next, and if more than one of these exist, the robot matches <TOPIC> next. Categories are stored in alphabetical order by pattern. Inputs to be matched to Categories are compared in reverse order. So when it matches more than one category the last one is taken. Typically its good to bundle up a bunch of Categories into one general topic. So lacking an adequate response and knowing that we have a specific Topic, the robot can generate specific pick-up lines and keep the conversation going.

5 Conditional Elements

The condition element instructs the AIML interpreter to return specified contents depending upon the results of matching a predicate against a pattern.

NB: The condition element has three different types. The three different types specified here are distinguished by an xsi:type attribute, which permits a validating XML Schema processor to validate them. Two of the types may contain li elements, of which there are three different types, whose validity is determined by the type of enclosing condition. In practice, an AIML interpreter may allow the omission of the xsi:type attribute and may instead heuristically determine which type of condition (and hence li) is in use.

5.1 Block Condition

The block Condition type of condition has a required attribute name, which specifies an AIML predicate, and a required attribute value, which contains a simple pattern expression.

<aiml:condition
 xsi:type = "blockCondition"
 name = aiml-predicate-name
 value = aiml-simple-pattern-expression >

 <!-- Contents: aiml-template-elements -->

</aiml:condition>

If the contents of the value attribute match the value of the predicate specified by name, then the AIML interpreter should return the contents of the condition. If not, the empty string "" should be returned.

5.2 Single-predicate Condition

The single Predicate Condition type of condition has a required attribute name, which specifies an AIML predicate. This form of condition must contain at least one li element. Zero or more of these li elements may be of the valueOnlyListItem type. Zero or one of these li elements may be of the defaultListItem type.

<!-- Category: aiml-template-elements -->

<aiml:condition
 xsi:type = "singlePredicateCondition"
 name = aiml-predicate-name >

 <!-- Contents: value-only-list-item*, default-list-item{0,1} -->

</aiml:condition>

The singlePredicateCondition type of condition is processed as follows:

Reading each contained li in order:

1. If the li is a valueOnlyListItem type, then compare the contents of the value attribute of the li with the value of the predicate specified by the name attribute of the enclosing condition.

2. If they match, then return the contents of the li and stop processing this condition.

3. If they do not match, continue processing the condition.

4. If the li is a defaultListItem type, then return the contents of the li and stop processing this condition.

5.3 Multi-predicate Condition

The multi Predicate Condition type of condition has no attributes. This form of condition must contain at least one li element. Zero or more of these li elements may be of the nameValueListItem type. Zero or one of these li elements may be of the defaultListItem type.

<!-- Category: aiml-template-elements -->

<aiml:condition
 xsi:type = "multiPredicateCondition">

 <!-- Contents: name-value-list-item*, default-list-item{0,1} -->

</aiml:condition>

The multiPredicateCondition type of condition is processed as follows:

Reading each contained li in order:

1. If the li is a nameValueListItem type, then compare the contents of the value attribute of the li with the value of the predicate specified by the name attribute of the li.

2. If they match, then return the contents of the li and stop processing this condition.

3. If they do not match, continue processing the condition.

4. If the li is a defaultListItem type, then return the contents of the li and stop processing this condition.

5.4 Condition List Items

As described above, two types of condition may contain li elements. There are three types of li elements. The type of li element allowed in a given condition depends upon the type of that condition, as described above.

5.5 Default List Items

An li element of the type defaultListItem has no attributes. It may contain any AIML template elements.

<!-- Category: condition-list-item -->

<aiml:li
 xsi:type = "defaultListItem">

 <!-- Contents: aiml-template-elements -->

</aiml:li>

5.6 Value-only List Items

An li element of the type valueOnlyListItem has a required attribute value, which must contain a simple pattern expression. The element may contain any AIML template elements.

<!-- Category: condition-list-item -->

<aiml:li
 xsi:type = "valueOnlyListItem"
 value = aiml-simple-pattern-expression >

 <!-- Contents: aiml-template-elements -->

</aiml:li>

5.7 Name and Value List Items

An li element of the type nameValueListItem has a required attribute name, which specifies an AIML predicate, and a required attribute value, which contains a simple pattern expression. The element may contain any AIML template elements.

<!-- Category: condition-list-item -->

<aiml:li
 xsi:type = "nameValueListItem"
 name = aiml-predicate-name
 value = aiml-simple-pattern-expression >

 <!-- Contents: aiml-template-elements -->

</aiml:li>

5.8 Random

The random element instructs the AIML interpreter to return exactly one of its contained li elements randomly. The random element must contain one or more li elements of type defaultListItem, and cannot contain any other elements.

<!-- Category: aiml-template-elements -->

<aiml:random>

 <!-- Contents: default-list-item+ -->

</aiml:random>

6 AIML Tags

Categories are specified by the information between the beginning and ending lines in the form:

<category> ...information... </category>

Similarly, the input words are specified by:

<pattern> ...information... </pattern>

The output response is specified by the information between <template> and </template>.

The items between "<" and ">" are called AIML tags or elements. Each AIML tag has an opening tag and a closing tag of the form:

<some-tag> ...information... </some-tag>

It sometimes happens that there is no information between the opening and closing tags and you can use the abbreviation:

<some-tag/>

(note the "/" after the tag name) as a replacement for:

<some-tag></some-tag>

6.1 Custom AIML tags
AIML is extensible. You can create an infinite number of new tags for foreign language pronouns, predicates, or application-specific properties. "Predicate tags" mean tags that have a client-specific "set" and "get" method. Pronouns like "it" have predicate tags like <set name="it"></set>. AIML has a number of these built-in tags for common English pronouns.

Using the <set name="xxxx"> and <get name="xxxx"> tags an endless variety of languages and possiblilties can be supported.

7 References
http://www.alicebot.org/ - A.L.I.C.E Artificial Intelligence Foundation website.

http://www.pandorabots.com/pandora/pics/aimless/tutorial.htm - AIML Tutorial
http://www.alicebot.org/documentation/aiml-primer.html
http://www.alicebot.org/TR/2001/WD-aiml/#section-conditional-elements
